11,774 research outputs found

    Computer program documentation for a subcritical wing design code using higher order far-field drag minimization

    Get PDF
    A subsonic, linearized aerodynamic theory, wing design program for one or two planforms was developed which uses a vortex lattice near field model and a higher order panel method in the far field. The theoretical development of the wake model and its implementation in the vortex lattice design code are summarized and sample results are given. Detailed program usage instructions, sample input and output data, and a program listing are presented in the Appendixes. The far field wake model assumes a wake vortex sheet whose strength varies piecewise linearly in the spanwise direction. From this model analytical expressions for lift coefficient, induced drag coefficient, pitching moment coefficient, and bending moment coefficient were developed. From these relationships a direct optimization scheme is used to determine the optimum wake vorticity distribution for minimum induced drag, subject to constraints on lift, and pitching or bending moment. Integration spanwise yields the bound circulation, which is interpolated in the near field vortex lattice to obtain the design camber surface(s)

    Local moment, itinerancy and deviation from Fermi liquid behavior in Nax_xCoO2_2 for 0.71x0.840.71 \leq x \leq 0.84

    Full text link
    Here we report the observation of Fermi surface (FS) pockets via the Shubnikov de Haas effect in Nax_xCoO2_2 for x=0.71x = 0.71 and 0.84, respectively. Our observations indicate that the FS expected for each compound intersects their corresponding Brillouin zones, as defined by the previously reported superlattice structures, leading to small reconstructed FS pockets, but only if a precise number of holes per unit cell is \emph{localized}. For 0.71x<0.750.71 \leq x < 0.75 the coexistence of itinerant carriers and localized S=1/2S =1/2 spins on a paramagnetic triangular superlattice leads at low temperatures to the observation of a deviation from standard Fermi-liquid behavior in the electrical transport and heat capacity properties, suggesting the formation of some kind of quantum spin-liquid ground state.Comment: 4 pages, 4 figure

    Calculation of potential flow past non-lifting bodies at angle of attack using axial and surface singularity methods

    Get PDF
    Two different singularity methods have been utilized to calculate the potential flow past a three dimensional non-lifting body. Two separate FORTRAN computer programs have been developed to implement these theoretical models, which will in the future allow inclusion of the fuselage effect in a pair of existing subcritical wing design computer programs. The first method uses higher order axial singularity distributions to model axisymmetric bodies of revolution in an either axial or inclined uniform potential flow. Use of inset of the singularity line away from the body for blunt noses, and cosine-type element distributions have been applied to obtain the optimal results. Excellent agreement to five significant figures with the exact solution pressure coefficient value has been found for a series of ellipsoids at different angles of attack. Solutions obtained for other axisymmetric bodies compare well with available experimental data. The second method utilizes distributions of singularities on the body surface, in the form of a discrete vortex lattice. This program is capable of modeling arbitrary three dimensional non-lifting bodies. Much effort has been devoted to finding the optimal method of calculating the tangential velocity on the body surface, extending techniques previously developed by other workers

    Effect of aluminum alloy wheel forging and spinning process parameters on forming force

    Get PDF
    In order to study the influence of process parameters on the forming force during the forging and spinning process of the wheel hub, five parameters were selected: die preheating temperature, blank temperature, upper die down speed, friction coefficient and feed rate.Use Deform and Simufact software to simulate and obtain the influence law of each process parameter on forming force. The results provide a certain reference for reasonable selection of process parameters in the forming process

    SUMO Modification Stabilizes Enterovirus 71 Polymerase 3D To Facilitate Viral Replication.

    Get PDF
    Accumulating evidence suggests that viruses hijack cellular proteins to circumvent the host immune system. Ubiquitination and SUMOylation are extensively studied posttranslational modifications (PTMs) that play critical roles in diverse biological processes. Cross talk between ubiquitination and SUMOylation of both host and viral proteins has been reported to result in distinct functional consequences. Enterovirus 71 (EV71), an RNA virus belonging to the family Picornaviridae, is a common cause of hand, foot, and mouth disease. Little is known concerning how host PTM systems interact with enteroviruses. Here, we demonstrate that the 3D protein, an RNA-dependent RNA polymerase (RdRp) of EV71, is modified by small ubiquitin-like modifier 1 (SUMO-1) both during infection and in vitro Residues K159 and L150/D151/L152 were responsible for 3D SUMOylation as determined by bioinformatics prediction combined with site-directed mutagenesis. Also, primer-dependent polymerase assays indicated that mutation of SUMOylation sites impaired 3D polymerase activity and virus replication. Moreover, 3D is ubiquitinated in a SUMO-dependent manner, and SUMOylation is crucial for 3D stability, which may be due to the interplay between the two PTMs. Importantly, increasing the level of SUMO-1 in EV71-infected cells augmented the SUMOylation and ubiquitination levels of 3D, leading to enhanced replication of EV71. These results together suggested that SUMO and ubiquitin cooperatively regulated EV71 infection, either by SUMO-ubiquitin hybrid chains or by ubiquitin conjugating to the exposed lysine residue through SUMOylation. Our study provides new insight into how a virus utilizes cellular pathways to facilitate its replication. IMPORTANCE: Infection with enterovirus 71 (EV71) often causes neurological diseases in children, and EV71 is responsible for the majority of fatalities. Based on a better understanding of interplay between virus and host cell, antiviral drugs against enteroviruses may be developed. As a dynamic cellular process of posttranslational modification, SUMOylation regulates global cellular protein localization, interaction, stability, and enzymatic activity. However, little is known concerning how SUMOylation directly influences virus replication by targeting viral polymerase. Here, we found that EV71 polymerase 3D was SUMOylated during EV71 infection and in vitro Moreover, the SUMOylation sites were determined, and in vitro polymerase assays indicated that mutations at SUMOylation sites could impair polymerase synthesis. Importantly, 3D is ubiquitinated in a SUMOylation-dependent manner that enhances the stability of the viral polymerase. Our findings indicate that the two modifications likely cooperatively enhance virus replication. Our study may offer a new therapeutic strategy against virus replication

    MicroRNA-23a promotes myelination in the central nervous system.

    Get PDF
    Demyelinating disorders including leukodystrophies are devastating conditions that are still in need of better understanding, and both oligodendrocyte differentiation and myelin synthesis pathways are potential avenues for developing treatment. Overexpression of lamin B1 leads to leukodystrophy characterized by demyelination of the central nervous system, and microRNA-23 (miR-23) was found to suppress lamin B1 and enhance oligodendrocyte differentiation in vitro. Here, we demonstrated that miR-23a-overexpressing mice have increased myelin thickness, providing in vivo evidence that miR-23a enhances both oligodendrocyte differentiation and myelin synthesis. Using this mouse model, we explored possible miR-23a targets and revealed that the phosphatase and tensin homologue/phosphatidylinositol trisphosphate kinase/Akt/mammalian target of rapamycin pathway is modulated by miR-23a. Additionally, a long noncoding RNA, 2700046G09Rik, was identified as a miR-23a target and modulates phosphatase and tensin homologue itself in a miR-23a-dependent manner. The data presented here imply a unique role for miR-23a in the coordination of proteins and noncoding RNAs in generating and maintaining healthy myelin

    Effect of 6061 aluminum alloy wheel forging and spinning process parameters on forming quality

    Get PDF
    This paper mainly studies the influence of process parameters on the forming quality during the spinning process of 6061 aluminum alloy wheel forging blanks. The four parameters of spinning temperature, spindle speed, wheel feed and wall thickness reduction rate are selected for research, and the quality of the surface of the hub and the influence on the size of the hub are judged. Simufact software is used to simulate the influence of various process parameters on the forming quality of the hub. The results provide a certain reference for the reasonable selection of process parameters during the spinning forming process of 6061 aluminum alloy hub
    corecore