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SUMMARY 

Two different singulari~ methods have been utilized to 

calculate the potential flow past a three dimensional non-lifting 

body. Two separate FORTRAN computer programs have been developed ~o 

implement these theoretical models, which will in the future allow 

inclusion of the fuselage effect in a pair of existing subcritical 

wing design computer programs. 

The first method uses higher order axial singularity 

distributions to model axisymmetric bodies of revolution in an 

either axial or inclined uniform potential flow. Use of inset of 

the singularity line away from the body for blunt noses, and cosine

type element distributions have been applied to obtain the optimal 

results. Excellent agreement, to five significant figures, with the 

exact solution pressure coefficient value has been found for a 

series of ellipsoids at different angles of attack. Solutions 

obtained for other axisymmetric bodies compare well with available 

experimental data. 

The second method utilizes distributions of singularities on 

the boqy surface, in the form of a discrete vortex lattice. This 

program is capable of modeling arbitrary three dimensional non-

lifting bodies~ Much effort has been devoted to finding the optimal 

method of calculating the tangential veloci~ on the body surface, 

extending techniques previously developed by other workers. Again, 



the best solution for ellipsoids at angles of attack ranging between 

0-30°, has been obtained using cosine spacing of the elements 

axially. 

For a simple axisymmetric body of revolution without any slope 

discontinuity on the boqy surface, the first method offers a more 

accurate solution for less computational cost than the second 

method.- Therefore, while the surface singularit¥ method has the 

advantage of greater geometry generality, the axial singularity 

method is judged more suitable for modeling of fuselage effects in a 

preliminary aerodynamic design computer program. 
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CHAPTER 1 

INTRODUCTION 

Use of computers in aerodynamic theory has seen a trend in 

recent years toward the flow field analysis of complete aircraft 

configurations by a single program using a combination of boundary 

layer analysis and the full potential equation. Programs designed 

for this purpose do in fact exist, {refer here to references by 

Streett (1981) or by Mason (1977)), but most of them are extremely 

large and abound with subtleties often not evident to the user. In 

an ongoing research effort to include the body effect in a pair of 

existing wing design computer programs (Kuhlman and Shu, 1981; 

Kuhlman, 1983), it was decided to first develop separate fuselage 

programs as a preliminary step. Based on this spirit, the present 

work investigates the flow field around certain fuselage-shaped 

bodies using two theoretical formulations and their resulting 

computer programs. Either of these codes might possibly then be 

used in the above mentioned subcritical wing design programs to 

include the effects of a fuselage on the design. 

The problem under consideration in this study is that of the 

uniform, incompressible, inviscid, potential flow past a non-lifting 

body. Bodies of interest may be either axisymmetric or arbitrary, 

although results to be presented herein have been limited to 

axisymmetric bodies. The governing differential equation in terms 

of the velocity potential ~ is the well known Laplace's equation. 
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The surface of the body can, in general, be described by a function 

F(xl' x2' x3) = O. The variables xl' x2' and x3 are determined by 

the coordinate system used in the calculation. The mathematical 

statement of this problem is to find a solution to: 

subject to the boundary conditions 

grad ~ • grad F = ~ • grad F = 0 

and 

~ grad ~ = U 1 
co at infinity 

(1.1) 

(1 .2) 

(1.3 ) 

If the problem is rewritten in terms of the perturbation field 

~, due to the body, equations (1.1 to 1.3) become: 

(1.4 ) 

(grad ~ + U 1) • grad F = 0 
CD 

(1.5 ) 

grad ~ + 0 at infinity (1 .6) 

Despite the fact that Laplace's equation is one of the simplest 



and best known of all partial differential equations, the number of 

known useful exact solutions is quite small. The only exact 

solution of the uniform potential flow about a closed three

dimensional boqy is that for the general ellipsoid and its 

specializations. This is due to the difficulty in satisfying the 

nonhomogeneous boundary conditions and the requirement for the body 

surface to be a coordinate surface of one of the special orthogonal 

coordinate systems for which Laplace's equation can be separated 

into ordinary differential equations. As a result, use of numerical 

approximate solutions is usually considered in practical 

applications. Many different numerical schemes have been 

formulated. Some are exact in problem formulation and numerical 

methods then are used to obtain the approximate solution. Under 

such schemes, errors in the calculated solution can in prinCiple be 

made as small as desired, by sufficiently refining the numerical 

calculations. In contrast, some schemes introduce analytical 

approximations into the problem formulation itself, and thus place 

limits on the accuracy that can be obtained regardless of the 

numerical procedures used. One typical example is the so called 

slender boqy theo~ where the body bounda~ condition is greatly 

simplified for high fineness ratio bodies. 

The present study is based on the first classification which is 

exact in formulation and numerical in solution. There are two main 

classes of numerical approaches; axial and surface singularity 

methods, which may be used in solving the potential flow past non

lifting bodies. From a practical pOint of view, these two methods 

each have their own characteristic properties and advantages. 
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Choice of method for a particular application is largely dependent 

upon the configur&tion of interest and how accurate the solution 

must be. In general, th~ axial singularity method has less 

flexibility than the surface singularity method, in that it can not 

handle certain axisymmetric bodies with discontinuous slopes, nor 

can it handle the entire class of non~axisymmetric bodies. However, 

for simple and axisymmetric body shapes, the axial singularity 

method is easier and more economical to use than the surface 

singularity method. In contrast, the surface singularity method is 

in principle more accurate and has fewer geometrical restrictions 

when compared to the axial singularity method. It is, then, much 

more sophisticated and powerful, but requires a substantially 

greater number of numerical calculations and more computer 

storage. Other solution methods applicable to solving Laplace's 

equation include finite difference methods (David and Geppson, 

1973), but these methods have not been utilized in the present 

study. This is because the singularity methods based upon Green's 

theorem significantly reduce the cost of obtaining a numerical 

solution for ~ to a certain accuracy, largely as a result of 

reduction of the problem to finding a suitable singularity 

distribution on the boqy surface, rather than requiring that a 

solution for ~ be determined in the entire region exterior to the 

body. The development of the present singularity methods have been 

summarized in Chapters 2 and 3 of this thesis, for the axial and 

surface singularity methods; respectively. Also given in these 

chapters are brief literature surveys. 

In light of these considerations, a FORTRAN computer program 
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based on the axial singularity method has been implemented in the 

present work for the simple, axisymmetrlc fuselage. Much effort has 

been devoted to obtain the most accurate numerical solution for both 

axisymmetric flow and inclined flow. Higher order axial singularity 

distributions have been formulated for both axial flow and cross 

flow. Pressure distribution results for ellipsoidal bodies as 

presented in Chapter 2, show excellent agreement with the exact 

solution everywhere on the body at arbitrary angle of attack 

providing that separation does not exist on the body. In Chapter 4, 

additional" results from the axial singularity method, for more 

complicated geometries, have been compared with results from a 

surface singularity program described in Chapter 3 and with 

experimental data. 

Although the surface panel method is not considered an 

efficient model to evaluate fuselage effects in the preliminary wing 

design program, because large computer memory and long computational 

time are needed to perform the calculation, it does offer a reliable 

solution which can serve as a bench mark for those solutions 

obtained from the axial singularity method. Chapter 3 gives a 

detailed outline of the formulation and accuracy of the surface 

panel technique utilized in the present study. A second FORTRAN 

computer program has been implemented as part of the present work to 

perform numerical calculations, for ellipsoidal bodies in 

axisymmetric flow or at angle of attack. These results have been 

presented in Chapter 3, while results for more complex geometries 

have been presented in Chapter 4. 

7 



LIST OF SYMBOLS 

a inset distance or semi-major axis of ellipsoid 

A area of vortex lattice panel 

b semi-minor axis of ellipsoid 

Cp pressure coefficient 

d distance from control point to vortex filament 

e eccentricity of ellipsoid 

t boqy length or vortex filament length or panel chord 
length 

L total boqy length 

Ka axial coefficient of virtual mass in equn. (2.66) 

Kc cross coefficient of virtual mass in equn. (2.66) 

M order of singularity strength polynomial function or 
Mach number . 

.. 
n unit normal vector 

N total number of axial singularity panels or total 
number of vortex lattice panels 

Pij,qij,rij vortex lattice influence coefficients, see equn. (3.3) 

q source strength 

r radial coordinate or magnitude of position vector 

R nose radius of curvature or shoulder radius of body 

s bounding surface of a region 

u axial velocity component 

ux,ur,u e axial, radial and circumferential velocity components 

U~ free-stream velocity 
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v 

w 

w 

x,y,z 

x,r,6 

a 

a 

r 

6 

u 

p 

SUBSCRIPTS 

c 

i 

j 

k 

total tangential velocity or induced velocity due to a 
vortex filament 

total tangential velocity 

radial velocity component 

self-induced velocity due to a closed loop with unit 
strength of circulation 

cartesian coordinates of points 

cylindrical coordinates of paints 

angle of attack 

inclination angle of control point with x-axis 

strength of circulation 

circumferential velocity component 

circumferential coordinate or meridian angle or 
inclination angle of panel with x-axis 

doublet strength or curvelinear coordinate variable 

axial integration variable 

ratio of circumference to diameter of circle 

radial distance of control pOint to body axis 

tangential velocity due to local vortex lattice panel 

velocity potenial 

disturbance velocity potential 

index of panel control point or centroid of area 

index of control point for axial singulari~ method 

index of influencing panel 

summation index 
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m 

xl, rl 

x2,r2,a 

ABBREV IA nONS 

CS 

CD 

LVS 

LVD 

CPE 

CPN 

SR 

10 

index of minimum induced velocity point 

index of axial and radial components for axial flow 

index of axial , radial and circumferential components 
for crossflow 

constant source 

constant doublet 

1 i nearly varying source 

11 nearly varying doublet 

exact value of pressure coefficient 

numerical value of pressure coefficient 

slenderness ratio 



CHAPTER 2 

AXIALLY DISTRIBUTED SINGULARITY METHOD FOR 

AXISYMMETRIC BODY OF REVOLUTION 

2.1 Literature Survey 

The idea of utilizing a distribution of singularities interior 

to the body surface to represent the potential flow past a body of 

revolution was first introduced by Von Karman (1930), who considered 

axisymmetric shapes in axisymmetric flow and represented them by a 

piecewise constant source distribution along the axis of symmetry. 

Since the original work of Von Karman, very little information on 

this method has been generated, until recently when Oberkampf and 

Watson (1974) discovered that this method produces a system of 

linear equations which is in general ill-conditioned, and requires 

very high computational accuracy (25 significant figures) in the 

construction of the influence coefficient matrix. They concluded 

that the method does not always produce reliable solutions for the 

flow around a specified body and is very sensitive not only to the 

shape of the contour but also to the number of elements used to 

generate the body. Karamcheti (1966) states that the body should be 

slender and should not have any discontinuities in the slope of the 

meridian line. Zedan and Dalton (1978) extended the method by 

employing piecewise linearly varying source distributions to improve 

the computational accuracy. The solutions obtained therein are more 

accurate as compared to the constant strength element methods. One 
11 



of the most important features of the linearly varying source method 

is its ability to deal with bodies having an inflection point in the 

meridian contour. They again concluded that their new method cannot 

handle boqy shapes with sudden changes in the slope of the meridian 

line. More recently, Zedan and Dalton (1980) have used a polynomial 

function of arbitrary degree to represent the variation of the 

intensity of the source distribution over each element. The effects 

of the order of the distribution, the number of elements, the 

normalization of the body coordinates, the fineness ratio and the 

geomet~ of the profile on the performance of the method have been 

studied in detail. They concluded that with appropriate choice of 

these parameters, this approach can be as accurate as the surface 

singularity approach even for simple axisymmetric bodies with 

inflection points. 

In view of the simpliCity of the axial source distribution 

methods as compared to the surface singularity distribution methods, 

and the tremendous saving in computer memory storage and the amount 

of numerical calculation necessary, it was considered justifiable to 

apply this method as an initial step in considering the effect of an 

axisymmetric fuselage upon the optimal camber surface obtained from 

an existing aerodynamic wing-design computer program, provided the 

accuracy can be improved and the limitations can be reduced for the 

former class of methods. 

The present study is an extension of Zedan and Dalton's work. 

An axial singularity distribution is placed along the centerline of 

the body of revolution, where this singularity distribution is 

assumed to have either a piecewise constant or a piecewise linearly 
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varying strength over a series of discrete segments. Expressions 

for velocity potential and induced velocities have been developed 

for source (identical to those of Zedan and Dalton, 1980) and 

doublet (as suggested in Karamcheti, 1966) singularity 

distributions. In addition to this, the expressions have been 

extended for piecewise constant, or linearly varying crossflow 

doublet singularities, which allows simulation of an axisymmetric 

fuselage at angle of attack. 

A FORTRAN computer program has been developed to implement this 

theoretical model. This program is currently available for use in 

the optimal wing-design computer programs (Kuhlman and Shu, 1981; 

Kuhlman, 1983). Future plans are to add the current axisymmetric 

body model in the wing-design code. In this chapter the development 

of the theoretical model will be summarized, and the effects of the 

type of singularity, the order of the distribution, the number of 

elements, the geometry of the profile, as well as some paneling 

techniques, on the performance of the method will be shown by using 

a simple ellipsoidal test case. Results have been obtained for a 

series of ellipsoidal bodies of revolution of varying slenderness 

ratio and angle of attack, and these results have been compared with 

an exact solution summarized in Wang (1970). Results for more 

complicated axisymmetric bodies will be presented in Chapter 4. 

2.2 Formulation and Equations of the Problem 

2.2.1 Formulation of the Problem 

Consider the steady, acyclic, potential flow past an 

axisymmetric body of revolution that is at an angle of attack to the 

direction of the undisturbed stream (see Sketch 2.1). 
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~-----r~------~ ____ ~ x 

~- r = R(x) 

Sketch 2.1 Illustrating flow with angle of 
attack past the body of revolution. 

In analyzing the flow past a body of revolution, it is 

convenient to use cylindrical coordinates (r,a,x) as shown in Sketch 

2.1. The surface of the boqy is described by an equation of the 

form r = R(x). This may also be expressed as F(r,x) = r - R(x) = o. 
Equations (1.4 to 1.6) then take the following form: 

222 
a ~ + l!t + 1 a ~ + a ~ = 0 ;,:z rar 7;7 ~ 

( 2.1) 

on Fer,x) = 0 (2.2) 

v~ +- 0 at infinity (2.3) 

here U - it u = 1 it u = 1.1 w r - ar' a r aa' x ax 

Due to the lineari~ of the problem (governing equation and boundary 
14 



conditions), the solution of Equations (2.l to 2.3) may be expressed 

as the superposition of the solutions of two separate problems: (1) 

the problem representing the axial flow at speed U.cosa past the 

boqy of revolution, and (2) the problem representing the cross flow 

at speed U.sina past the same body of revolution (See Sketches 2.2 

and 2.3). 

z 

r = R(x) 

U COSa 
00 - a x • L .. 

Sketch 2.2 Illustrating axial flow past the body 
of revo 1 Liti on 

z 

r = R(x) 

\ 

a t-----t-;-! ----f--~_ x 
} L 

Sketch 2.3 Illustrating cross flow past the body 
of revolution 
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These two mathematical problems may be stated in the form of: 

Axisymmetric Flow Past a Body of Revolution: ~l = ~1 (r,x) 

at infinity (2.6) 

Cross Flow Past a Body of Revolution: ~2 = ~2(r,a,x) 

Vq,2 + 0 at infinity (2.9) 

Then one is able to use line singularity distribution 

techniques to solve these two problems and obtain the total solution 

by superposition of ~l and ~2. For the axisymmetric flow part, one 

might use sources or doublets along the body axis. The singularity 

distribution is divided into finite elements. The strength 

variation over each element can be described by a polynomial 

function of arbitrary degree. In this study, we consider four types 

of representations, which are: constant source, linearly varying 

source, constant doublet, and linearly varying doublet. For 

16 



convenience to extend the method to higher order singularity 

expressions, the general formulas have been listed for reference. 

The cross f1 ow part, as suggested by Karamcheti (l966), has been 

represented by a piecewise constant doublet or linearly varying 

doublet distribution along the axis of the body, with the axes of 

the doublets being normal to the boqy axis; the doublet axes oppose 

the direction of the undisturbed crossf10w stream at infinity (see 

Sketch 2.4). After solving these two mathematical problems, one can 

obtain the pressure coefficient by using Bernoul1i's equation 

V2 
C =1---,... 

p U ' 
(2.10) 

co 

z 

x 

ttl U sina 
00 

Sketch 2.4 Cross flow past a body of revolution 
by combination of a doublet distribution 
and a uniform stream 

Although one can superpose the ~ and ~, one cannot do the same for 

the pressure coefficient since it is a nonlinear function of ~. 

Here V is local total velocity, in the following form: 

17 



(2.11) 

and 

(2.12) 

2.2.2 Eguations for an Element 

The following three techniques have been used to evaluate the 

integrals which will appear in the induced velocity expressions: 

(1) integration by analytic geometry relationships, (2) integral 

tables, and (3) the MACSYMA symbolic manipulation language (Bogen et 

al., 1975). All three methods have been utilized in the present 

worK, with the majority of the integrations having been performed by 

MACSYMA. 

In the following six different element equations, we define the 

symbolic expressions: 

(2.13) 

(2.14) 

where (t1,t2) are the X coordinates of the endpoints of the 

element. Then the MACSYMA symbolic manipulation language has been 

utilized to obtain the integral expressions as listed in Appendix A. 

18 



2.2.2.1 Constant source distribution. Consider first 

the jth element of an axial singularity distribution having a 

constant intensity qj as shown in Sketch 2.5. The 

potential function and the velocity components at 

the ith point (xi,ri ) are given by 

Here qj is constant on element j. 

velocity 

(2.15) 

(2.16) 

(2.17) 

Using tables of integrals (Gradshteyn and Ryzhik, 1980), u and 

ware evaluated in closed form as 

Xi!l - x;2 - ri
2 

)] 

~!12_2Xi!1 + Xi 2 + r i 2 

(2.18) 
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(2.l9) 

In MACSYMA language expressions (Appendix A), the constant source 

velocity may be expressed as 

2.2.2.2 Linearly varying source distribution. If the jth element 

(see Sketch 2.5) is assumed to have a linearly varying source 

distribution, Qj = ajl + aj2~t the velocity potential function and 

the velocity components at the ith point (xi,r
i

) are given by 

U COSa 
tD 

---

r 

x 

jth element with constant 
Source strength qj 

Sketch 2.5 Illustrating axial singularity panelling scheMe 
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<j>(xf,ri ) 
1 12 aj1 + a· 2 ~ (2.22) = - tr,F f J d~ 
~ 11';(x._~)2 + r.2 

1 1 

1 12 (a· l +a·2 ~)(x.-~) u(xi,r i ) - f J J 1 d~ (2.23) 
- 1W 11 [(xi-~)2 + ri 2]3/2 

r. 12 a·1 + a·2 ~ w(xi,r i ) - 1 f J J d~ (2.24) - 1W 11 [(xi-~)2 + r
i
2]372 

Equations (2.23 and 2.24) can be rewritten as: 

(2.25) 

(2.26) 

At this point, to extend the scheme to an arbitrary Mth order 

polynomial function, simply let qj =~~~ ajK~K-l, substitute back 

into equations (2.16 and 2.17) and evaluate the integrals to 

obtain the following general expressions: 

(2.27) 

(2.28) 

where ajK are constants. 
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2.2.2.3 Constant doublet distribution. Next, the source 

singularity is replaced by a doublet singularity with axes directed 

into the undisturbed stream (see Sketch 2.6). That is, the doublet 

strength is written as ~j = -~ji. The velocity potential function 

and the velocity components at the ith pOint (xi,r
i

) due to 

the jth element are given by: 

(2.29) 

(2.30) 

(2.31) 

Equations (2.30 and 2.31) may be evaluated for a piecewise 

constant doublet distribution in the following forms: 

~ . 3lJ. 2 
u{xi'r i ) - J H - ~ (xi P1 - 2x iP2 + P3) - 4rr 1 (2.32) 

w{x i ,ri ) = 3ri~j 
4'11' (x i P1 - P2) (2.33) 
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U COSa 
CD - o~----~~~----+---~- x 

-.. 
jth element with constant doublet 

Sketch 2.6 Illustrating axial doublet singularity 
panelling scheme . 

2.2.2.4 Linearly varying doublet distribution. 

If the doublet strength is linearly varying over the jth 

element, -~jr = -(ajl + aj2~)t, the velocity potential function and 

the velocity components at the ith point (xi,ri) due to this panel 

are gi ven by: 

(2.34) 

(2.35) 

(2.36) 

By evaluating the above expressions, again using MACSYMA, one 23 
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obtains: 

(2.37) 

3r. 
w(x i ,ri ) = '4'lf [aj1 (P2 - x/1) + aj2 (P

3 
- x

i
P
2

)] (2.38) 

If use of higher order doublet distribution is necessary, use 
M+l K-l-t-

-~.T = - E aJ·K~ 1 to replace ~j in equations (2.30 and 2.31), J 1 K=l 
and then the general expressions for (~,u,w) are: 

1 M+1 
= -~ K:1 ajK (HK+1 - xiHK) (2.39) 

1 M+1 2 
u(xi,r i ) = ~ K:1 ajK(HK - 3x i PK + 6xiPK+1-3PK+2) (2.40) 

3r. M+1 
w(x i ,ri ) = '4'lf K:1 ajK (PK+1 - xiPK) (2.41) 

2.2.2.5 Constant cross flow doublet distribution. Use of a 

piecewise constant doublet distribution along the body axis to 

simulate cross flow has been illustrated in Sketch 2.7. 

The jth element (from x = tl to t2) is a constant strength 

doublet distribution with doublet axes painted toward the on-coming 

flow. The velocity potential function ~ at a field point "i" due to 

this element can be expressed as: 
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z 

t t t U sina 
CD 

Sketch 2.7 Illustrating axial doublet singularity 
·panelling scheme for cross flow 

<Pi j (x l' r i ' a f) 
sinai 12 l1jri 

2 372 d~ (2.42) = 41f J 11 [(xi-~)2 + r i ] 

The reason that ai is involved in the vel OCl ty potential 

function expression is due to the three dimensional behavior of the 

cross flow. This ai dependence will be kept in order to make the 

expressions derived complete. However, later on, it will be shown 

that the doublet strength distribution gotten from solving the 

llnear equations resulting from the boundary conditions is 

independent of the a location of control pOints. In this sense, we 

can elimlna~~ ~ne sf dependence simply by locating control points on 

the top meridian line (a i = 900 ). However, if it is desired to cal

culate the pressur~ co~tficients at points not located on the top or 

bottom meridian lines, the a effect must be included. 

By differentiating <Pij' three velocity expressions result: 

25 



u(x.,r.,a.) 
111 

w(x.,r.,a.) , , , 

(2.43) 

(2.44) 

(2.45) 

If the procedure described in section 1.2.2 is followed, the 

expressions for velocities will be obtained as follows: 

lJ.sina. 3 
J , ( . 

= - 2 s, n S· ·+1 
4 1,J 'I1'r i 

. 3 ) S1 n S •. 
1,J (2.46) 

lJ·sina. 3 
= J 2' [2(coSSi ,j+l - COSSi,j) -(cos Si,j+1 

4'11'r i 

(2.47) 

(COSS. .+1 - COSS. .) 1,J 1 ,J 
(2.48) 

where the 6. ·+1,6 .. have been defined in Sketch 2.7. , ,J 1,J 

In the computer program, a subroutine based on these 

expressions has been implemented. If the MACSYMA language is used 

to perform the above integrations, the following forms result for 
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the constant cross flow doublet: 

3IJ.r.sinS. 
u(x i ,r i ,6;) - - J 1 1 (Xi P1 - P2 ) 41f (2.49) 

IJ.sin6. 3IJjri 2sin6i 
w(x i ,ri ,6 i } = J 1 Hl - Pl 41f 41f (2.50) 

IJ.cos6. 
if} (x i ,r i ,6;) = J 1 Hl 41f (2.51) 

2.2.2.6 Linearly varying cross flow doublet distribution. If the 

doublet strength is linearly varying over the jth element, 

-IJjl = -(a jl + aj2~)j , the velocity potential function and the 

velocity components at the ith paint (x i ,ri ,6;) due to the jth panel 

are gi ven by: 

(2.52) 

3sin61· 12 (a·1+a·2~)(x.-~)r. 
_~ J J J 1 1 d~ 

- - 41f 11 [(x._~)2 + r. 2]5/2 
1 1 

(2.53) 

(2.54) 

(2.55) 
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By using the MACSYMA language, one obtalns: 

3r.sine. 
u(x i ,ri ,ei ) - - \n 1 Eajl (X;Pl P2) + aj2 (Xi P2 - P3 )] (2.56) 

d3) (x.,r.,e.) 
1 1 1 (2.58) 

The same method applied to arbitrary higher order doublet 
M+l 

d· t . b t' . -to K-l-to t 1 . 15 rl u 10ns, uSlng -~J.J = - E aJ'K~ J 0 rep ace ~J' 1n 
K=l 

equations (2.43 to 2.45) results in: 

3ri sine i M+l 
u(xi,ri,e i ) - - 4n E ajK(xiPK - PK+l) (2.59) 

K=l 

sinei M+l 
2 w(xi,ri,e i ) = 411' E ajK(HK - 3r i PK) (2.60) 

K=l 

cose i M+l 
= 411' E aJ·KHK K=l 

(2.61 ) 

2.2.3 Equations for Determining the Strength of Singularities 

The expressions for induced velocity components at 

the ith control point due to the jth element distributed along the 

body axis (from x = 1, to 12) have been derived in section 2.2.2. 

When the contributions from individual elements are added together, 

the total induced velocity at the ith control point can be expressed 

in terms of the unknown strengths of the singularities at each 
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element. These unknown strengths can be specified as arbitrary 

order polynomial functions. In the present studies, constant (order 

M = 0) and linearly varying (order M = 1) cases have been 

considered. When these expressions are substituted back into 

equation (2.5) or equation (2.8) to satisfy the no penetration 

requirement on the body surface, a system of linear algebraic 

equations for the unknown polynomial coefficients is obtained, which 

is then solved for the unknown strengths. Once the strength 

distribution is known, the velocity and pressure coefficient can be 

calculated at any field pOint outside the body, as well as on the 

body surface. 

Since the solution procedures are essentially the same in 

either the axial flow or cross flow calculations, therefore, only 

the source singularity distribution in axial uniform flow is 

presented as an example. There is a slight difference in using the 

linearly varying doublet as the singularity in either the axial or 

cross flow calculation. This difference will be described 

subsequently. 

The induced velocity components at the ith control point due to 

N elements distributed along the body axis (see Sketch 2.8) are 

given as follows: 

(2.62) 

(2.63) 
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where M is the degree of the polynomial function, and ajk is the 

unknown coefficient of the singularity distribution element "jll. 

r 

~------~------~~-----x 

Sketch 2.3 Illustrating axial source singularity 
panel distrjbution for equations (2.62 & 2.63) 

If the constant source is chosen as the singularity type(M = 
0), there are N unknown coefficients and a N*N linear system results 

from applying the no penetration boundary condition at the selected 

N control paints on the boqy surface. Gauss elimination methods 

have been employed herein to solve for the unknowns. If M = 1, 

linearly varying source, is chosen as the singularity, there are two 

unknowns for each element. However, continuity of the singularity 

distribution at the junction point between two neighboring elements 

provides another N-l equations. This continuity requirement is 

valid so long as the boqy slope and curvature are continuous. The 

general form of these N-1 continuity equations is given as: 

where .I.j is the x coordinate of the junction pOint of elements IIj" 

and llj+lli. 

The last equation required is a closure condition, due to the 
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fact that the net efflux of the source distribution should be zero 

for a closed body, and is given by 
N 
.. ( L + 1 L 2) = 0 
t.. a· l · ;r a. 2 . j=l J, J ~ J, J 

(2.65) 

where Lj is the length of the jth element. Hence, the 2N unknowns 

may be determined from the 2N equations developed above. If higher 

order singularities are used (M ~ 2), then corresponding higher 

order derivatives of the source strength should be continuous, at 

least for bodies which are sufficiently smooth. For example, for 

the second order source (M = 2), continuity of the slope of the 

source strength should be enforced at the juncture between two 

neighboring elements. 

As mentioned above, when the linearly varying doublet 

singularity is used to represent the body, the last closure 

condition is no longer applicable. The form of this last condition 

for a general body of revolution is not known. However, in the 

present studies, a condition of zero strength at the starting and 

ending points of the singularity distribution has been used to 

perform the calculations. Imposition of some more fundamental 

condition on the linear doublet distribution may improve the 

solution accuracy for this singularity type. 

2.3 Analytical Solution for Ellipsoidal Body 

The potential flow past an ellipsoidal body was solved exactly 

by Lamb (1932). Wang (1970) gave an explicit expression for the 

surface velocity potential function ~ in terms of two surface 

coordinates ~ and a (see Sketch 2.9). Here, (-1 ~ ~ ~ 1) is 

constant along the parallels and a is constant along the 
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meridians. It should be understood that no restrictions on angle of 

attack or slenderness ratio was imposed in the solution. By 

differentiating the velocity potential, ~, and utilizing the 

Bernoulli's equation, a closed form of the surface pressure 

coefficient, Cp' is obtained as: 

lJ=-l-+-___ ..,..._ 

Sketch 2.9 Coordinates scheme for equation (2.66) 

+ ((1 + Kc)sina sine]2} 

where 

e a , the eccentri ci ty 

6=0 

(2.66) 

k log ~:: - 1 
Ka a [ 1 I l+e] 

:--:-2" - re log l-e 
l-e 

, the axial coefficient of virtual mass 

1 
K c a .... 1 +""'Z'"'K-

a 
, the cros~ coefficient of virtual mass 
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A similar, explicit expression for Cp has been given by Cebeci, 

Kattab and Stewartson (1980). Another expression for Cp for an 

ellipsoid at angle of attack has been given in Schlichting and 

Truckenbrodt (1979), expressed in cylindrical coordinates (see 

Sketch 2.10). The pressure coefficient, Cp, was expressed in the 

following fonn: 

r 6=0 

x 

u~ 
6=TT 

Sketch 2.10 Coordinates scheme for equation (2.67) 

C = [1 
P 

where 

A = 2 
~ o 

2 
2 (E.) 

B = 

a 
a =---.,.......~ o b2 3/2 

(l - ~) 
a 

8 
4-« 2 o 

x/;2 
b a'Yl - (i) cose 

+ 2B a 2 2 a 
1-[1- ~](!) 

a' a 

(2.67) 

1 b2 1/2 b2 1/2 
{tanh - [(l -~) ] - (l -~) } 

a a 

It is easy to show that both expressions are identical for flow 
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without angle of attack (a = 00 ). Howe~er, an appreciable error 

results from equation (2.67) for the case of the flow at an angle of 

attack (see Table 1 and Figure 1). Numerical experiments show; 

at ~= 50, the discrepancy from the exact solution (Lamb) is about 

7%; while at a = 100, more than 30% discrepancy results, which is 

totally unacceptable in any kind of flow calculation. Schlichting 

and Truckenbrodt indicated that this equation is only good for flow 

at small angles of attack, but such a large discrepancy is 

unexpected. It was found that the small a equation (2.67) can be 

directly derived from the exact equation (2.66) by assuming a is 

small, so that COSa = 1 and sina = a, and neglecting all terms of 

order a2• Therefore, while equation (2.67) is the correct 

expression for Cp for small a, use of equation (2.66) is recommended 

instead of (2.67) for all values of a. In the comparisons between 

the present numerical model and the analytical solution to be 

presented in the following section, only the full expression given 

by equation (2.66) has been utilized. 

2.4 Accuracy of Method 

It has been found that the solution accuracy of the axial 

singularity method is largely dependent upon the following four 

factors; (1) singularity type, (2) number of discrete elements, (3) 

inset panelling technique, and (4) panelling scheme. In this work, 

a systematic evaluation has been conducted to determine the error 

sensitivities of the solution for an ellipsoidal body to these 

factors. The motivation to do these studies is basically due to the 

fact that decisions on these variables must be made a priori for any 

particular problem, and will usually be influenced by the problem 



and the information desired from the solution. It is expected that 

the present study might provide some guidelines for more general 

bodies. 

The test geometry has been chosen to be an ellipsoid of SR=5, 

because the exact solution previously described already is known, 

and it is a suitable geometry to show the error sensitivities for 

all four factors mentioned above. Similar studies of SR=2 and SR=lO 

ellipsoids have yielded solution of accuracies comparable to those 

presented herein for SR=5. All comparisons have been made using 

root mean square error for comparison. This error calculation has 

been based on pressure coefficients calculated at 40 points equally 

distributed along a meridian line on the body surface. The root 

mean square error is defined as 

Error (2.68) 

where CPE i is the exact pressure coefficient at the ith point 

and CPN. is the numerical pressure coefficient at the ith point. 
1 

The same fractional locations of the 40 pOints have been used, 

independent of the control pOint locations. 

2.4.1 Test 1: Axisymmetric Flow 

A set of results for 19 typical cases for the SR=5 ellipsoid 

at a = 00 are listed in Table 2. Through comparisons of the error 

magnitudes, one can easily find the individual contributions to 

solution accuracy due to one factor by holding the others fixed. 
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2.4.1.1 Element number. By comparing configurations (1 and 3), it 

is seen that the solution is improved by utilizing more elements to 

represent the body. Also, the pair of configurations (2 and 9) 

reinforce more dramatically the same conclusion. In fact, 

increasing the number of elements generally improves the solution 

accuracy for any numerical calculation procedure. In the present 

studies, 20 elements are considered sufficient to represent the 

ellipsoid. 

2.4.1.2 Singularity type. By comparing configurations (5, 10, 12 

and 13), it may be seen that the constant doublet is the least 

accurate among the four types of singularity, being inadequate to 

represent the source like nature of flow near the stagnation 

point. Therefore, it has not been considered in further 

application. Next, the constant source distribution has the same 

accuracy as the linearly varying doublet. Finally, the linearly 

varying source yields the best solution, in the test case, for a 

fixed number of elements, and is recommended for application to 

other more complicated geometries. 

The singularity strength and Cp distribution along the body 

axis for these four configurations have been shown in Figures 2 and 

3. Note that the source strength predicted by slender body theory 

has been shown in Figure 2 for comparison. Since the numerical 

solution error in Figure 3 is almost indistinguishable, Table 3 has 

been prepared to display the deviations of these four solutions from 

the exact solution. Note that the error in Cp for the linearly 
-5 varying source distribution is on the order of 10 over much of the 

ellipsoid, with larger errors near the stagnation points. 
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As a fairer comparison of the relative accuracies of the 

constant and linear source singularities for approximately equal 

computational cost, configuration pairs (13, 17) and (14, 18) may be 

compared. These test pairs have equal matrix sizes and thus should 

have nearly equal run times and costs. It is seen both for equal 

sized element (configurations 13, 17) and cosine spacing 

(configurations 14, 18) use of 40 constant source singularities 

leads to better accuracy than 20 linear sources. However, 

comparison of pairs (S, 19) displays an opposite trend for a sparser 

element distribution. That is, ten equal sized linear sources yield 

a more accurate solution than 20 constant source singularities. 

Based on these limited studies it is apparent that use of higher 

order singularities mayor may not result in reduced computational 

cost. 

2.4.1.3 Panelling scheme. The semi-circle cosine type panel 

distribution has been used previously by many authors in choosing 

the chordwise and spanwise locations of vortex pOints as well as 

control points (see, for example, Lan, 1974). This panelling scheme 

is based on the assumption that better results might be obtained if 

finer elements are used in regions of rapid variation of sectional 

properties. Of course, qualitative properties of the section must 

be known a priori. It has been proven effective and accurate 

through numerical experiments in thin wing theory. Therefore, it is 

believed to be reasonable to apply this technique in the present 

body calculation. Two comparisons have been made; first, between 

configurations 5 and 9, and second, configurations 13 and 14 of 

Table 2. Both comparisons glve the positive answer, that a 
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tremendous improvement in solution accuracy is obtained from using 

COSlne spacing instead of an equal spacing scheme. Hence, use of 

cosine spacing is strongly recommended, wherever applicable, in 

other flow calculations. 

2.4.1.4 Inset panelling technique. Zedan and Dalton (1980) 

concluded that use of the submerged panelling technique would lead 

to a more accurate solution for bodies with either a blunt nose or 

tail. In the present studies, it has been found that the optimal 

inset distance for the ellipsoid of SR=5 is about 1% of the body 

total length (configurations 3 to 7). The root mean square error 

versus submerged distance is shown in Figure 4. 

For ellipsoids of different slenderness ratios, the optimal 

inset distance must be varied with the magnitude of the local radius 

of the nose and tail. This ellipsoid nose radius is found to be 

b/SR, where b is the length of the minor axis of the ellipsoid. 

Numerical experiments have shown that 6% of the body length is the 

optimal inset value for a SR=2 ellipsoid, and 0.25% of the body 

length is optimal for a SR=lO ellipsoid. Table 4 (a), (b) display 

the relation between the inset value and the associated root mean 

square error. All test configurations have been run using 20 cosine 

space linearly varying source elements • 
• 

It has been discovered that a nearly constant relationship 

exists for the optimal inset value for other slenderness ratio 

ellipsoids, as shown the following brief table, prepared for 20 

cosine spaced elements. Here R is the nose radius of curvature. 

38 



TABLE 2.1 Optimal inset value for various SR ellipsoid 

optimal inset of singularity line 

SR a b R % of L % of a % of b (% of b)/R - -
10 10 1 0.1 0.25 0.5 5. 50. 

5 5 1 0.2 1 2. 10. 50. 

2 2 1 0.5 6 12. 24. 48. 

Notice that the optimal inset value is a constant fraction of 

the ellipsoid nose radius. Therefore, the optimal inset value for 

all ellipsoidal bodies should be governed by the following 

expression: 

optimal inset value in terms of = 25 
the body total 1 ength (%) "Sff 

(2.69) 

Similar results were found using 20 equal sized elements, but the 

constant was changed slightly so an effect of the length of the 

element nearest the nose could be seen. 

Table 4 (c) shows the root mean square Cp error for 

axisymmetric flow past a series of ellipsoids using the suggested 

inset value calculated from equation (2.69). Undoubtedly, this 

equation offers a ve~ accurate Cp solution, and it1s use is 

recommended in further calculations for blunt nosed ellipsoidal 

bodies. Figure 5 displays the Cp distributions for axisymmetric 

flow past SR=2, 5 and 10 ellipsoids using the optimal inset 

panelling scheme. 
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2.4.1.5 Optimal solution. By combinil~g all of the above favorable 

factors together, an optimal representation for axisymmetric flow 

past a SR=5 ellipsoid may be determined as 20 discrete elements of 

cosine spaced linearly varying source distribution with a 1% inset 

panelling scheme. This configuration does give the minimum error in 

Cp for 20 elements of 0.000063. Figures 6 and 7 display the 

pressure coefficient and the error distributions. Note that the 

numerical solution matches the exact solution very well on the whole 

body surface, with the largest errors occurring near the nose and 

tail. Also shown, for completeness in Figure 6, is the Cp 

distribution calculated by slender body theory using the source 

distribution shown in Figure 2. Slender body theory is in error 

nominally by 15% over the middle 80% of the body. Similar 

calculations at SR=lO show approximately 4% error. 

2.4.2 Test 2: Inclined Flow at 5° Angle of Attack 

A procedure similar to that performed for a = 00 above, is now 

repeated for a = 5° to investigate the error sensitivities of 

panelling and singularity variables in the cross flow calculation. 

Since the inclined flow can be found as the superposition of a pure 

-axial flow and the corresponding cross flow, one can fix the 

parameters of the axial flow part of the calculation, and allow only 

the cross flow calculation singularity and panelling to vary. A 

choice of 20 discrete elements, for a cosine spaced constant source 

distribution with 1% inset panelling will allow sufficient accuracy 

in the axial calculations to see error changes for different 

crossflow configurations. There are nine such cases listed in Table 

5. All results have been calculated along a 9 = 33.750 meridian 
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line on the body surface. Since the root mean square error in Cp 

at e = 33.750 is very small, for m -t choices of panelling and 

inset, detailed plots of singularity strength and Cp distribution 

have not been presented. It was also found that the root mean 

square error in Cp values at other e values were essentially 

identical to those presented in Table 2, and that the singularity 

strength distribution solutions were unchanged by 

different e meridian line locations of the control points. 

2.4.2.1 Singularity type. There are only two choices for 

singularity type in the cross flow calculation, either constant 

doublet or linearly varying doublet. Again, it was found that the 

linearly varying doublet yields better results. Comparing 

configurations 1 and 5, the root mean square error is reduced from 

0.019056 to 0.005749. Comparisons between configurations 2 and 6, 

as well as 4 and 8, result in the same conclusion. 

2.4.2.2 Panelling scheme. By comparing configurations 1 and 3 J 

it is again found that cosine spacing is better than equal spacing 

for solution accuracy. Reductions ~f root mean square error also 

appear in the test pairs configurations 2 and 4 or 6 and 8. 

2.4.2.3 Inset panelling. The inset panelling technique also 

improves the solution accuracy in the cross fiow calculation. This 

technique is recommended for use for blunt boqy calculations under 

the present singularity panel method. Note that if no inset is used 

for the ellipsoid at angle of attack (not the recommended panelling 

scheme), use of cosine spacing of the cross flow linearly varying 

doublet actually degrades the solution accuracy (see configurations 
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5, 7). This is the only exception in consistency to the conclusions 

made previously for the axial flow analysis. The reason for this 

different trend is not known. 

2.4.2.4 Optimal solution. To find the best panelling arrangement 

to represent the inclined flow past a SR=5 ellipsoidal body, we use 

the optimal case for axial flow, combined with the linearly varying 

doublet with cosine spacing and l~ inset panelling for the cross 

flow. This is configuration 9 in Table 5 which does yield the 

minimum error of all cases tested. Based on these results, use of 

this panelling scheme is strongly recommended for blunt body 

calculations. Figures (a through 12) display the singularity 

strength and Cp distributions of this optimal panelling arrangement 

at several additional values of a between 5° and 30°. The numerical 

solutions are in excellent agreement with the exact solution 

everywhere on the body surface. 
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CHAPTER 3 

VORTEX LATTICE SURFACE SINGULARITY METHOD 

FOR ARBITRARY BODY OF REVOLUTION 

3.1 Literature Survey 

The surface singularity method is one of the most reliable 

methods available to compute the potential flow past a body of 

arbitrary geometry. By utilizing this method, which is based on 

application of Green's theorem, the original three dimensional flow 

problem is reduced to an integral equation over the given boundary 

surface of the flow region, comprised of the boqy surface and/or 

wake. The Green's theorem expression represents the disturbance 

velocity potential ~ at any point P in the flow field as the 

integrated effect of source and doublet (or equivalently vorticity) 

singularities on the body surface. The mathematical statement is 

~ (P) = - k J J (~ grad ~ 
s 

~ grad 1..) • n ds 
r (3.ll 

To reduce this expression to one which contains either source 

only or doublet only, consider a second function, ~l' which is 

harmonic inside the body, and adding the Green's theorem expression 

for ~l evaluated outside the body, one obtains 
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Choice of a unique ~l solution such that ~l = ~ on s results in 
a~ 

a source only method, while fixing ~l such that an 1 = ;~ on the 

boundary yields a doublet singularity method. Also possible are 

various combinations of source and doublet singularities. 

Mathematically, these singularity methods will yield equivalent 

results independent of which representation may be used. However, 

numerical differences do occur when different schemes are used. For 

example, sources are more effective near stagnation pOints, and 

doublets are more effective in generating and controlling surface 

tangential velocities, since flow near a stagnation point is source

like. Intuitively, then, one might expect some benefits to be 

possible from use of the combined source-vortex or source-doublet 

methods. This idea has been investigated and proven correct in 

numerical experiments (Bristow, 1976). 

In summarizing related previous work, discussion of two main 

areas will be given because these two approaches have each had a 

profound influence on the present study. In fact, the computer 

program which has been developed herein to implement the surface 

singularity method is essentially the same as the method due to 

Asfar et a1. (1979) described below, except for some changes in 

calculation methods and program capability. 

The first approach, due for example to Hess and Smith "(1962, 

1967) utilized a source density distribution over the body 

surface. Application of the no-penetration boundary condition on 

the boqy surface yielded a Fredholm integral equation of the second 

kind for the source density. The profile curves defining the body 

were approximated by a large number of small straight or curved line 
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rectangular elements. The source density was then assumed constant 

over each element. Thus, the contribution of each element to the 

integral expression for the velocity could be obtained by taking 

this constant but unknown source density out of the integral and 

then performing the integration of known geometric quantities over 

the element. Satisfying the integral equation at a control point on 

each element led to a system of linear equations for the source 

densities. Once these densities were evaluated by solving this 

linear system, straightforward substitution in the appropriate 

velocity expressions yielded the velocity distribution and hence the 

pressure distribution. 

The second technique (see, for example, Kandi1 et a1., 1974, 

1977; Atta, 1978; Asfar et a1., 1979) utilized surface distributions 

of vorticity, in the form of a vortex lattice, and sources, to 

represent the body. The surface source distribution used by Asfar 

et al.(1979) was predetermined in such a way that the source on any 

given element, when acting alone, generated a velocity field which 

cancelled a prescribed fraction of the normal component of the free

stream velocity at the control point of that element. The vortex 

lattice was formed by a constant strength quadrilateral vortex 

element, except at the nose or tail where triangular elements were 

used. Description of the formation of the vortex lattice have been 

given by Crigler (1957), Lamar (1971), and Kandi1 et al. (1974, 

1977). Using the element loop circulations (which automatically 

satisfy the spatial conservation of circulation) as the unknowns, 

and satisfying the no-penetration boundary condition for all 

elements on the body surface, a strongly diagonal influence 
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coefficient matrix of linear equations was generated. Then the 

unknown strengths of circulation for each element were obtained by 

solving this linear system. Since the governing equation is 

elliptic, all aerodynamic parameters were calculated by summing up 

the individual contributions from source singularities and vortex 

lattice circulation elements. Atta (1978) has studied various 

problem formulations in detail, and found the loop circulation 

formulation to be much more convenient than a branch circulation 

formulation. 

Both methods have been found to yield fairly accurate 

solutions, by employing a large number of panels, with a resulting 

high computational cost. According to Asfar et al. (1979), for 

blunt bodies, the second approach of using a combination of source 

and vortex singularities was superior to either the vortex lattice 

only (a special case of the second method, when the source strength 

is zero) or the source panel method; while for slender bodies, the 

vortex lattice method appeared to be superior to the source because 

of the slenderness of the body. This assertion provides another 

justification for using the vortex lattice method in the present 

surface singularity theory. 

3.2 Formulation of the Problem 

The problem formulation for the present method is identical to 

that given in Chapter 1, except that grad F has been replaced 

by n, the outward unit normal vector on the body surface. This 

formulation is more convenient for complicated bodies for which an 

analytical expression for F is unknown. 

46 



3.2.1 Numerical Scheme 

The body under consideration has been located in a rlght handed 

cartesian coordinate system with the X axis oriented in opposition 

to the oncoming flow (see Sketch 3.1). The undisturbed free-stream 

is, in general, oriented at an angle of attack, a, with respect to 

the X axis, in the XZ plane. The body has been described by a 

number of discrete points on it's surface. In the present work, 

where the surface of the boqy was described by an analytic function, 

these body pOints have been generated by the program itself. For 

more complicated geometry, the program user must define these body 

points manually. 

The surface points have been organized in "rows" and "columns" 

as indicated in Sketch 3.1. The lattice consists of short straight 

lines connecting the body paints, thereby forming quadrilateral 

elements, with the exception of the nose and tail, where these lines 

converge so that the elements are triangular. A system of elements 

which are chosen to be quadrilaterals of aspect ratio of nearly 

unity has been found to yield the best results. The velocity fields 

generated from the above scheme satisfy equations (1.4 and 1.6) 

regardless of the circulation strengths. It only remains, 

therefore, to choose their strengths so that equation (1.5) will be 

satisfied. Equation (1.5) can also be manipulated into a set of 

algebraic equations, by substituting the following expressions into 

the equation: 

N 
= E (P .. r.r + q .. r.j + r .. r.~) 

j=l lJ J lJ J lJ J 
(3.3) 
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n. = Ail + B.j + C.~ 
1 1 1 (3.4) 

o = -U cOsal - U sina ~ 
011 011 011 (3.5) 

where the subscript i denotes the associated quantity evaluated at 

the control point "i", rj is the unknown strength of circulation of 

element "j"; Pij , qij' r ij are the influence coefficients, which 

give the velocities in the X, Y and Z directions at the ith control 

paint due to a unit loop circulation around the jth element, 

and Ai' Bi , Ci are the direction cosines of the surface unit normal 

at the control point "i". Expressions for the influence 

coefficients will be given subsequently. 

Substitution of equations (3.3 to 3.5) into equation (1.5), 

yields a set of equations for the unknown loop circulations as: 

COLUMNS 

y -"'3iI!s:::~;, 

u~~ X Z 

Sketch 3.1 Coordinate scheme for the problem 

= UQIICOsa Ai + UQllsina Ci 
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The sequence of numerical techniques which are involved in 

solving this linear system include decisions as to how to 

efficiently store the large influence coefficient matrix, selection 

of a linear equation solver, and reduction of the size of the linear 

system due to symmetric properties, as has been well documented by 

Kandil (1974) and Asfar et al. (1979). The following two sections 

are devoted to development of the explicit expre~sions for the 

constant coefficients which appear in equation (3.6). 

(x 3 'Y3,z3) 

(x2 'Y2,Z2) ~-

y tl 
x ___ .--;:::., 

z 

(a) A closed loop vortex element 

(b) A finite length vortex filament 

Sketch 3.2 Nomenclature for calculating the induced velocity 
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3.2.2 Calculation of Influence Coefficients Pij,-q;j,_rij-

The total induced velocity at the ;th control point due to a 

discrete vortex element "j", with the constant strength of 

circulation along the sides (see Sketch 3.3.a), can be expressed in 

the following symbolic form: 
~ + + ~ v. d d = P .. r.1 + q .. r.J + r .. r .K 1 n uce 1J J lJ J 1J J 

(3.7) 

The induced velocity due to a single finite vortex segment (see 

Sketch 3.2.b) is calculated by using the Biot-Savart law (see 

Karamcheti, 1966). 

r. e2 r. 
V - J f sine d a ev = ~r (cosa, - cosa2}ev (3.8) t 1 - 41T r p 9, 't 1T r p 

where 

+ 
and ev' the direction of the induced velocity, is given by the unit 

vector 

(3.10) 

substituting equations (3.9 and 3.10) into equation (3.8), a vector 

expression for this induced velocity can be obtained as follows: 

(3.11) 



+ .. .. )~ 
r2 = (xc - ~ h + (y c - Y2}J + (zc - z2 J( (3.12) 

~t2' ~t3' ~t4 are calculated ;n the same way. By summ; ng the 

contribution of each segment together, Pij , qij' and r;j are given 

4 (x -
r - 1 L C ,'J' - ;r:-

where 

'+'11' t=l 

(3.14) 

(xt +1 - xt)(xc - xt +1) + (Yt+l - Yt)(Y c - Yt +l) + (Zt+l - Zt)(Zc - Zt+l) 

~(xc - xt +1)2 + (Yc - Yt +l)2 + (zc - Zt+l)2 51 



These expressions have been implemented in a FORTRAN computer 

program to compute the velocities due to a closed loop discrete 

vortex element. Note that the index of t+l is set equal to 1 

when t is 4. 

3.2.3 Unit Normal Vector Calculation and Control Point Selection 

The unit normal vector and the control point coordinates can be 

obtained through algebraic combination of the four given element 

corner points (see Sketch 3.3), as is now described. 

(x3 ,y 3'Z3) 

(xc'yc'Zc) 

ith control point 

(X2'Y2'Z2) 

Sketch 3.3 Nomenclature for calculating the unit normal vector 

In order to simplify the geometry calculation, it will be 

assumed that the element is planar; that is, the four points 

defining a panel element all lie in the same plane. This assumption 

has been satisfied by the axisymmetric bodies studied in the present 

work. 

3.2.3.1 Unit normal vector calculation. From equation (3.4), the 
+ ~ ~ + unit normal vector is defined as ni = Ai ' + Bi J + Ci K, where Ai' 

Bi , and Ci are constant coefficients which are determined by the 

+ + 

element geometry. 
+ r1 x r Z ni can be represented by , where 

1'\ x rzl 
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,tj 

(3.15) 

Therefore, 

= AI 1 + 81 j + CI ~ (3.16) 

By definition, then 

Ai = 
AI 

~(A')2+ (BI)2+ (C I) 2 

Bi = 
BI 

~(A')2 + (8 1 )2+ (C I) 2 

Ci = CI 
(3.17) 

~(AI)2 + (BI)2 + (C I )2 
where 

AI = (Y2 - Y4)(z3 - zl) - (Y3 - Yl )(z2 - z4) 

(3.18) 
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The choice of location of the element control point, where the 

no-penetration boundary condition is satisfied, is crucial due to 

the singular nature of the discrete vortex filaments. Following 

Hess and Smith (1962), Asfar et a1. (1979) concluded that the best 

results were obtained when the control points were located so that 

the normal component of self-induced velocity due to the closed loop 

vortex filament at it's own control point is a minimum (known as the 

"null point" according to Hess and Smith). These minimum se1f

induced velocity points were located through a tedious search 

technique. The search scheme is costly and is restricted to 

problems of fixed geometry. For panels with edge separation (for 

example in the wing problem), this has to be repeated for the same 

panel at each iteration. Hence it is not a practical scheme for the 

wing-body combination problem. Therefore, in the present study, 

this scheme has not been used. Instead, the centroid of the panel 

area has been chosen as the control point location, since for the 

axisymmetric bodies studied, all panels are planar. The advantage 

of this choice of location is the ease of calculation of the 

centroid, provided there is not too much difference for the control 

point location between these two modes. Numerical experiments have 

proven that this difference is small for both rectangular and 

triangular elements. The details of calculating the centroid and 

the panel area for a typical quadrilateral element is given in 

Appendix B. Also shown in Appendix B are the results of the 

numerical experiments comparing self-induced velocities for various 

control point locations. 

54 



3.2.4 Pressure Coefficient Calculation 

Once the linear system given by equation (3.6) has been solved 

for the unknown circulations, the pressure coefficient at each point 

on the surface of the body is calculated by using Bernoul1i ' s equa-

tion, 

V 2 
t 

c = 1 - ~ 
p U 

CID 

(3.19) 

Here, Vt is the total tangential velocity of the flow at the control 

point, and is evaluated, as described in Kandil et al. (1977), as the 

sum of 3 parts; first, the part due to the influence of all the 

vortex loop elements in the lattice at the control point, second, 

the contribution of the free stream velocity, and third, the 

ve10ci~ jump across the vortex sheet. The third term is obtained 

by estimating an equivalent continuous vortex sheet from the lumped 

vortex filaments. This contribution is to account for the self-

induced tangential velocity due to the local strength of the vortex 

sheet as explained by Kandi1* (1981). If this term is not taken 

into account, errorous pressure coefficients are found. For panels 

with continuous vorticity, this term automatically exists in the 

induced velocity expression (Kandil et a1., 1980). Kandil et al. 

(1977) have given a detailed description for ~ flat, rectangular 

element. Note that there is a typographical error in the definition 

sketch in that paper. Extension of this method to a general, 

quadrilateral vortex element has been implemented by Atta (1978) for 

*Private discussion with Dr. Kandil (1981). 
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a control point located at the average of four corner points. These 

two techniques for calculating the tangential velocity have been 

summarized in Appendix C. In the present studies, a modified method 

has been developed to calculate the tangential veloci~ due to the 

local quadrilateral vortex element. The idea is based on the 

equation due to Kandil et al. (1977) then extended to a quadrilateral 

element. The reason for developing the new expression instead of 

using the formula due to Atta (1978) is the lesser generality of the 

latter expression. It is easy to find that the formula due to Atta 

(1978) will give the same magnitude of tangential velocity for any 

point on the element, which is not consistent with the mathematical 

model. The modified method has the ability to account for the 

deviation of the tangential velocity between different points. For 

some special cases, as shown in the next section, the modified 

method gives solutions which are identical to those obtained using 

the expression due to Atta (1978). The comparison of these two 

schemes for either axisymmetric flow or inclined flow will also be 

shown in the next section. 

For a typical planar quadrilateral vortex element with two 

parallel sides, having the other two sides of equal length, as shown 

in Sketch 3.2, the tangential velocity of a point located on the 

center line is given as follows: 

(3.20) 



where 

3 

x 

y 

Sketch 3.2 Nomenclature of calculating the induced 
tangential velocity 

These expressions have been developed from those of Kandil et ale 

(1977) (summarized in Appendix e), and are similar to those of 

Kandi 1 et a 1. (1982). Modi fi cati ons have been made to account for 

the nonparallel orientations of r2 and r4, as well as to account for 

the unequal lengths of filaments r1 and r3• The ratios tl/tp a~d 

t3/tp in the TVX expression are to account for these unequal fila

ment lengths. The filaments r2 and r4 have been resolved into com

ponents along the x and y axes, and their x components used in 

computing Tvy. The signed y components of r2 and r4 have been used 

to replace r1 and r3 by ri and r3 as given above. Note that 

these r2, r4 y components have been lumped with r1 and r3 using 

linear interpolation, to allow movement of the control point away 

from the panel center. 
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In case the field point is not located on the body surface, but 

is very close to the vortex segment, there is no tangential velocity 

component in the total velocity expression. However, the induced 

velocity due to the vortex segment must be modified by a viscous 

core relation in the form of an exponential multiplier, which causes 

the induced velocity to approach zero as the vortex is approached. 

The reason for this is simply because the law of Biot and Savart 

which is based on an inviscid flow, is singular. However, no arti

ficial viscosity coefficient has been added in the present 

technique. An accurate accounting of the viscous effects must be 

obtained from boundary layer solutions, which is beyond the scope of 

the present study. Instead the velocity and pressure coefficients 

only at points on the body surface or at far field points have been 

obtained in the present work. 

3.3 Accuracy of Method 

Since the surface panel method has been developed for solving 

the potential flow past an arbitrary body, therefore, the technique 

of using the vortex ring element as an option to solve for the 

problem of axial flow past an axisymmetric body of revolution has 

not been considered here. Note that a very accurate Cp distribution 

could be obtained using this technique by employing a large number 

of ring elements. The test configurations investigated in the 

present study still remain in the axisymmetric body category. 

However, the flexibility for modelling a realistic fuselage 

(symmetric with the y=O plane) has been considered in the computer 

program. Because of the assumed symmetric property, only one half 
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of the control pOints on the body surface are stored, but the 

influence coefficients of the induced velocity at these points are 

evaluated in the usual way. For each one of these control pOints, 

the influence coefficient due to the image of the stored element is 

evaluated by simply reflecting the coordtnates of the corners of 

this element. The contributions are then added to those of the 

stored element. This reduces the number of unknowns by one half. 

In studying the performance of the method for the test cases 

discussed below, a serious problem of the need for a large number of 

elements to adequately represent the given body has been found to 

exist. This situation is undesirable in terms of cost. However, 

the reliability of the present scheme may be recognized by studying 

the solutions presented below. 

In this chapter,as in Chapter 2, the test geometry which has 

been considered and compared with the corresponding exact solution 

is a SR=5 ellipsoid. The tangential velocity jump has been 

calculated by the three different methods listed above: Kandil et 

al. (1977), Atta (1978), and the modified method, equation (3.20), 

and results have been displayed and discussed in sequence. 

3.3.1 AXisymmetric Flow 

For calculation of the aXisymmetric flow past an ellipsoid of 

SR=5, a panelling scheme using cosine axial distribution of panels 

has been applied, to improve the solution accuracy. This is 

consistent with the criteria mentioned in section 3.2.1, where it 

was indicated that the best results would be obtained if the vortex 

panel elements were chosen to be of aspect ratio of nearly unity. 

Of course, the cosine spaCing axial distribution is not the only way 
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to represent the body. The optimal panelling technique is expected 

to vary as the body geometry is varied. Figure 13 shows that the Cp 

distribution for the SR=~, ellipsoid along a meridian line obtained 

by using 8*30 panels (8 panels in the a direction by 30 panels 

axially), with a cosine spacing axial distribution, is much more 

accurate than that obtained using the same number of panels but with 

equal spacing in the axial direction. 

In order to discover the differences among the three tangential 

velocity calculation methods, Table 6 has been prepared. The test 

runs have all been based on the same panellfng scheme as above of 

8*30 panels, with a cosine axial distribution, and the control 

points have been located at the average of the four corner 

coordinates of each panel. In fact, location of the control points 

at the average of the four corner points is not recommended in 

general calculations. Another comparison, based on the recommended 

control point location of the centroid of area of each panel, will 

be given below. Note that the pressure distribution obtained by 

using the method of Atta (1978) is exactly the same as that which is 

obtained by using the modified method (equation 3.20), provided that 

the control points are selected to be the average of the four corner 

coordinates of the panels. Attals application of Kandil IS method 

and the present modified method both work better than Kandills 

original formulation does, for the non-rectangular elements utilized 

in this test case. Especially at the nose and tail region, where 

the element is less rectangular, the solution accuracy has been 

improved by accounting for the length effect and orientation of the 

vortex segments. The same conclusion is reached 
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in the second comparison, as shown in Table 7, where the control 

points were selected to be the centroid of area of each panel. 

Another way to improve the solution accuracy, by moving the control 

points of all triangular elements from the centroid of area to the 

3/4 chord length away from the apex of the element, was attempted, 

listed as "Scheme 2" in Table 7. No significant improvement was 

achieved through this effort. Numerically, Atta's method appears to 

be slightly superior to the modified method. However, the observed 

differences between these two methods are judged to be negligible. 

Therefore, the modified method (equation 3.20) is recommended in 

future applications, since it correctly accounts for variation in 

control point location. It is also noted that the solutions 

obtained from the vortex lattice surface panel method are less 

accurate than those obtained from the axial singularity method. The 

reason is because the present calculation doesn't involve enough 

panels to adequately represent the body, and due to the poor 

accuracy obtainable with the discrete vortex singularities used to 

represent the continuous surface vortex sheets. 

3.3.2 Inclined Flow at 20° Angle of Attack 

Procedures identical to those used in the axisymmetric flow 

analysis above were repeated for the flow at a 20° angle of attack 

for the SR=5 ellipsoidal body. Table 8 shows the Cp distribution 

along two meridian lines, one located 7.5° away from top meridian 

line, with the other located 82.5° away from top meridian line, 

using 12*20 panels, cosine spacing axial panel distribution, and 

with the control points located at the average of the four corner 

coordinates of each parrel. Numerical solutions obtained from both 
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Atta's and the modified method match th~ exact solution fairly well 

along the 9 = 82.50 meridian line, but are less accurate near the 

nose along the 9 = 7.50 meridian line. This may be explained in 

that the assumption of a linearly distributed vortex sheet strength 

used in the tangential veloci~ calculation is no longer adequate at 

the leeward side of the body near the nose when a large angle of 

attack is imposed. 

Tables 9 and 10 display the Cp solutions obtained by moving the 

control points to the centroid of area of the panels and keeping the 

rest of the conditions the same as for Table 8. Through comparison 

of these results, it is found that taking the centroid of the panel 

area as the control point location yields a more accurate Cp 

solution. This reinforces Asfar et al!s assertion about choosing 

the minimum induced velocity point as the control point location to 

obtain th~ best solution. 

Figure 14 displays the Cp distribution along four meridian 

lines in the first quadrant, compared with the exact solution, for 

the SR=5, a = 200 ellipsoidal body, using 12*20 panels, cosine 

spacing axial distribution, and the modified tangential velocity 

calculation method. Figure 15 displays the Cp distribution along 

six circumferential lines at different x/L locations and compares it 

with the exact solution for the same body using the same method. In 

general, the calculated solution matches the exact solution well, 

except at the leeward side of the body near the nose. Note that 

the 9 coordinate used in the surface singularity program is shifted 

l80~compared to that used in Chapter 2 for the axial singularity 

method. 
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CHAPTER 4 

RESULTS AND COMPARISONS FOR GENERAL 

AXISYMMETRIC CONFIGURATIONS 

4.1 Introduction 

To further investigate the accuracy and the capability of the 

two computer programs described in Chapters 2 and 3, six additional 

configurations have been investigated in a series of numerical 

experiments. The main area of concern for the axial singularity pro

gram has been to investigate the feasability of obtaining 

approximate Cp distributions for a series of axisymmetric bodies 

having discontinuous surface curvature, such as a cylindrical body 

with an ellipsoidal nose and tail. Previously, Zedan and Dalton 

(1980) have claimed that the axial singularity method cannot 

accurately model bodies with either discontinuous surface slope or 

surface curvature. It has been found in the present work that the 

axial singularity method appears to have the capability of modelling 

the second type of configuration having discontinuous changes in 

surface c~rvature, provided a careful numerical scheme is applied, 

as described below. Solutions for these types of configurations 

using the axial singularity method have been obtained and compared 

in this chapter with those obtained from the surface source program 

of Hess and Smith (1967) and available experimental data. A brief 

discussion about the panelling techniques has also been given 

separately for each test case. The vortex lattice surface 
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singularity program described in Chapter 3 has been run for each 

configuration, and compared with all other theoretical and 

experimental results. An explanation has been given in the 

discussion of the last configuration (300 cone-cylinder), to clear 

up the faulty conclusion which appeared in Asfar et al. (1979), where 

it was claimed that the surface vortex lattice method was superior 

to the surface source method. Generally, the comparisons shown in 

this chapter demonstrate that good Cp distributions can be obtained 

from either the axial singularity or the vortex lattice surface 

methods. Despite the fact that the surface velocity is extremely 

sensitive to the details of the surface geometry, the above two 

methods obviously have the capability to account for a wide range of 

surface geometry accurately. This means that the solution accuracy 

is largely dependent upon the input surface geometry and panelling, 

but not the methods themselves. This chapter is in~ended to serve 

as an indication of the capabilities of the two methods, and is 

therefore not intended to be all-inclusive. In particular, no 

results have been obtained for general three-dimensional bodies. 

This is largely due to a lack of effort to develop or utilize a 

general three dimensional geometry input routine such as GEMPAK (see 

Stack, 1982). 

4.2 Test Configurations 

4.2.1 Modified Ellipsoid with Zero Curvature at the Maximum 

Thickness 

This body is similar to a configuration which was described by 
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Hess and Smith (1967) as a two-dimensional body of SR=5, whose 

profile curve was given by 

( 4.1) 

Despite the strong similarity in the shapes of the same slenderness 

ratio 5 ellipsoidal body of revolution and this configuration, their 

surface pressure distributions are, of course, quite different. 

That for the ellipsoidal body is very flat and entirely concave 

down, while that for the modified ellipsoidal body obtained from 

equation (4.1) by replacingy by r, has a sharp peak at the shoulder 

and a wide region where it is concave up. 

The reason that this configuration has been chosen as a test 

case in the present study is that the geometry contains an infinite 

radius of curvature at the shoulder, and as a result, it can be 

viewed as a transitional model from the ellipsoid to a" cylindrical 

boqy witn an ellipsoidal nose and tail. 

Figure 16 (a) shows the source strength distribution along the 

body axis obtained by using the constant and linearly varying axial 

singularity schemes described in.Chapter 2. Both cases used 20 

cosine type discrete panels to represent the given body. The 

difference in the strength distribution for the linear source 

singularity method between the ellipsoid and this modified ellipsoid 

configuration is that the former one (Figure 2) has a continuous 

strength at the shoulder and the latter one has a jump in strength 

there. Apparently, the zero curvature at the shoulder is 

responsible for this jump. One must account for this discontinuity 
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in source strength when modeling those classes of bodies with 

discontinuous curvature using the linear source singularity. In 

building up the influence coefficient matrix, the continuity 

equation at the shoulder must be replaced by a constraint equation 

which will allow a strength jump but having zero net strength 

there. Therefore, the anti-symmetric property in axial singularity 

strength distribution is still maintained without any change due to 

the effect of discontinuous curvature at the shoulder. Figure 16 

(b) shows the Cp distribution along a meridian line at a = 00. Both 

constant and linearly varying source appear to give the same level 

of solution accuracy. The Cp curve also has a cusped peak at the 

shoulder which is the characteristic Cp property for this geometry. 

In order to confirm the accuracy of the solution obtained from 

the axial singularity program, the same configuration has been 

analyzed using the vortex lattice surface singularity program. The 

panelling scheme undertaken herein was an 8*30 cosine type axial 

distribution. Figure 17 displays the comparison of Cp distributions 

between the two different methods. The equivalence of the two 

solutions shown does provide evidence that the two solutions are 

each correct. No experimental data for this type of body is known. 

4.2.2 Ogival Body of Revolution 

The surface of this configuration is composed by rotating a 

finite circular arc around the body axis. Such geometries have a 

pOinted nose and tail. The body surface is governed by an analytic 

function where the slope and curvature are continuous. At the 

region very close to the pOinted nose and tail, potential flow 

theory will not predict an accurate Cp solution. However, it is 
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believed that a satisfactory Cp distribution can be obtained by 

using the present two programs over most of the body surface. 

Figure 18 (a), (b) display the source strength distributions 

along the boqy axis obtained using constant and linearly varying 

axial singularity schemes for SR=4 ogival body of revolution. The 

panelling technique undertaken for both computer runs is 20 discrete 

cosine spaced panels, without inset, to represent the given body. 

The selection of zero inset distance has been made due to the fact 

that the radius of curvature of a pOinted nose is zero. This is 

consistent with earlier recommendations of Zedan and Dalton 

(1980). Note that the source strength at the nose and tail is found 

to be zero, and the strength distribution is strictly anti

symmetric. The appearance of these two properties is helpful in 

judging the solution quality. Figure 18 (c) displays the Cp 

distribution along a meridian line. The constant and linearly 

varying source schemes give nearly identical Cp values for the 

entire region except at the nose and tail where the pressure has a 

sudden drop if the former scheme is used. The explanation for this 

incorrect pressure drop is that the constant strength axial 

singu1ari~ distribution is inadequate to describe flow at the nose 

region of an ogival body. However, the solution accuracies away 

from the nose and tail are strongly confirmed in this comparison. 

As was done in analyzing the first configuration, Figure 19 has 

been prepared to show the comparison of Cp solutions between the 

axial singularity and the vortex lattice surface panel programs. 

Again, a panelling scheme using 8*30, cosine axial spaced panels has 

been applied to model the present configuration in the vortex 
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lattice surface program. The discrepancy appearing in this figure 

is believed to be due to error in the surface vortex lattice 

method.~ An equal spacing panelling scheme reduces the numerical 

error (see Figure 19), but perhaps addition of some source 

singularities ne~r the stagnation points may be necessary to obtain 

more accurate results. 

4.2.3 Cylindrical Body with MOdified Ellipsoidal Nose 

This configuration consists of a cylindrical middle section 

with the radius equal to the semi-minor axis length of the modified 

ellipsoidal nose and tail. Therefore, the surface slope is 

continuous everywhere and surface curvature goes smoothly to zero on 

the middle cylindrical surface. This geometry is a special example 

of a smooth body of revolution. Slender body theory can well 

predict the Cp distribution in the middle part of such bodies, but 

not for the nose and tail. The present study does not impose the 

slender body assumptions in formulation. As for the first 

configuration, a strength jump at the junction where the radius of 

curvature goes to infinity will be allowed when the linearly varying 

source distribution is used. 

Figure 20 (a), (b) show the axial source strength distributions 

along the body axis obtained using constant and linearly varying 

source distributions. Both cases use 10 panels for the nose and 

tail, and one panel for the cylindrical part, where the cross 

sectional area is constant. In the case of using linear type 

singularity distributions to model the given body, the two source 

strength continuity equations at the junctions have been replaced by 

two extra no-penetration boundary equations. In other words, two 
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extra control points have been located on the body surface. 

Numerical experiments show that the Cp distribution in this 

configuration is not sensitive to the location of these two extra 

control pOints. However, some adjustment of control point location 

is needed for similar bodies having a long cylindrical middle 

section. More discussion about this adjustment will be given in 

discussion of the fifth configuration. 

The Cp distributions from these two test runs are nearly 

identical, as shown in Figure 20 (c). Although there is no 

experimental data available, this configuration has been modeled 

using the vortex lattice surface panel program. Panelling used is 

8*30 panels with equal axial spacing. Through the consistency of 

the Cp solutions for the above three theoretical cases, one may 

conclude that both the axial singularity method and the surface 

vortex lattice method are adequate for this configuration. 

4.2.4 Cylindrical Body with Ogival Nose 

This configuration was obtained by replacing the SR=5 modified 

ellipsoidal nose and tail with a SR=4 ogival nose and tail. The 

detailed geometry is shown in Figure 21. A similar boqy with a boat 

tail, as shown in the same figure, was utilized in a wind tunnel 

experimental test by Fox (1971) to obtain Cp distributions at a Mach 

number equal to 0.403. Over the front half of the body, the 

pressure distribution will not be strongly influenced by the 

different tail shapes. Therefore, the same symmetrical 

computational model has been used for both the axial singularity 

program and the vortex lattice surface panel program. Good 

agreement with the experimental Cp data is observed in Figure 21 for 
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all methods. The solution obtained from the axial singularity 

program matches the experimental data even better than that from the 

vortex lattice surface panel program. Of course, the small number 

of vortex lattice panels used in modelling this configuration is 

likely responsible for this discrepancy. 

4.2.5 Cylindrical Body with Ellipsoidal Nose 

This configuration is composed of a SR=2 blunt nose and a long 

cylindrical body. The available experimental Cp data were obtained 

by Campbell and Lewis (1955). The panelling technique used in the 

previous two configurations has been found to be inadequate for the 

present configuration. The reasons are, first, the nose is too 

blunt, and second, the length of cylinder section is too long. It 

has been found that the Cp solution for this configuration is very 

sensitive to the panelling and control point location, a result 

which was not seen for the previous two cases. In general, it has 

been found that the constant source singularity scheme cannot handle 

geometries similar to the present configuration. Based on 

accumulated experience, a new panelling scheme has been discovered 

and found to be adequate to yield a set of reasonable Cp values, for 

the linear source scheme. Again, the discontinuous strength at the 

juncture is allowed. Also, three panels are used to represent the 

cylindrical section. Since a sudden localized sink distribution was 

expected to be necessary to accurately model the flow around the 

shoulder over the junction between the nose and cylinder, the 

additional two panels on the cylinder were chosen to be relatively 

small. Because the two source strength continuity equations at the 

junctions do not exist, two extra control points were needed to 
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perform the calculations. Numerical experiments have shown that 

these two extra control points, combined with the original three 

control points, corresponding to the three panels in the cylindrical 

section, should be equally distributed on the cylinder surface to 

yield the best results. The detailed control pOint locations on the 

cylindrical section have been shown along with the resulting Cp 

solution in Figure 22. It has been found that the size of the two 

small panels is not critical, between one percent and four percent 

of the cylinder length, in obtaining the same accuracy of Cp 

distribution, even though the singularity strength distribution is 

changed somewhat. Figure 22 shows the Cp distribution along a 

meridian line when the flow is at zero angle of attack. Comparing 

the solution obtained from the axial singularity program to 

experimental data, a good agreement is noted over the front portions 

of the computational model. The small discrepancies on the 

cylindrical surface are mainly due to differences in geometry 

between the wind tunnel model and the computational model. This 

assertion has been verified by calculating the Cp values for a 

configuration having a longer cylindrical middle section, with the 

same size nose and tail. Pressures for such a geometry were closer 

to the data. Figure 22 also shows the Cp solution obtained from the 

vortex lattice surface panel program. The panel scheme used herein 

is 10*32 panels with a cosine type axial distribution. The solution 

accuracy for the vortex lattice surface panel method is seen to be 

not as good as that of the axial singularity method. 

Results are presented in Figure 23 for the same configuration 

as in Figure 22, but at an angle of attack of a = 6.080, along the 
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top meridian line of the body. Experim~ntal results have been shown 

as a solid curve because no data values were given by Campbell and 

Lewis (1955) when a f 0°. Panelling, inset and control point 

location for the source flow are the same as was used in Figure 22 

at a = 0°. However, the linear crossflow doublet calculations have 

been made assuming continuous strengths at the junctions between 

nose or tail and cylinder. Also, control point location on the 

cylinder has been chosen to be of the cosine type. Agreement 

between experiment and the axial singularity method is not as good 

as was observed for a = 00 ; the reasons for the observed 

discrepancies are not known. Also shown are results at e = 90 for 

the vortex lattice surface method, using 10*30 panels; these results 

are less accurate than the axial singularity results. 

4.2.6 30° Cone Cylinder 

This configuration first was studied by Johnson (1963). He 

compared pressure distributions computed by the surface source panel 

method (Douglas Neumann Program) of Hess and Smith (1967) with 

experimental data which he obtained at zero angle of attack and at 

plus and minus 20° angle of attack. The cylindrical after-body of 

the wind tunnel model had a length equal to 2.9 times its radius. 

The geometrical model utilized in the surface source panel program 

was semi-infinite. This difference between the geometries of the 

experiment and theory led to discrepancies between calculated and 

experimental pressures on the after portions of the cylindrical 

body, but its effect was found to be negligible over the nose 

regions. More recently, the same configuration has been studied by 

Asfar et ale (1979) to test the solution accuracy for their vortex 
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lattice surface panel method. The computational geometry in their 

work was exactly the same as the wind tunnel model of Johnson. 

Therefore, the pressure distributions obtained in Asfar's work 

matched the experimental data much better than those obtained from 

the surface source panel program of Hess and Smith over the after 

portions of the cylindrical body. Asfar was apparently unaware of 

these differences in geometry, and mistakenly concluded that the 

surface vortex lattice method was superior to the surface source 

method. In order to show that this conclusion is incorrect, two 

test runs have been prepared to illustrate the effect of after-body 

length of the 30° cone-cylinder geometry. As shown in Figure 24, 

the Cp distribution of the first geometry, having a cylindrical 

after-body with a length equal to 2.9 times its radius, matches the 

experimental data well. When the cylindircal after-body length was 

extended to be 8.5 times the cylinder radius, then the Cp 

distribution of this second geometry matches the solution obtained 

from the surface source panel program. Note that all four pressure 

curves agree well along the cone surface. In the after-region, the 

predicted pressure values could be strongly influenced by the sharp 

corner. 

Figures 25 through 27 compare the calculated and the experi

mental pressure distributions along three different meridian 

lines (a = 45u, a = 90u, a = 1350 ) at 20° angle of attack for this 

configuration. At this angle of attack, agreement is good over the 

nose portion of the body for all cases, and less satisfactory over 

the after-body. The biggest discrepancy occurs at the leeward side 

of the after-body, as shown in Figure 25, where the flow is expected 
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to be separated for this angle of attack. 

Figure 28 compares calculated and experimental circumferential 

pressure distributions at two axial locations on the pointed 30° 

cone-cylinder at 20° angle of attack. Again, the effect of 

separation on the leeward side of the cone can be seen, particularly 

for the after station. Panelling used for this configuration is 

10*32 panels, equally distributed along the x axis. Of course, the 

solution may be improved by adequately refining the panels. It is 

worthwhile to note that no success was had in attempts to obtain the 

Cp distribution using the axial singularity program for this 

geometry. 
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CHAPTER 5 

CONCLUSIONS 

Two different types of singularity methods have been considered 

in solving for the potential flow due to a uniform stream, either 

axisymmetric or at an angle of attack, past a non-lifting body. The 

theoretical formulations have been described in separate chapters of 

this thesis. Two FORTRAN computer programs have been generated and 

tested to implement these theoretical models. Solutions obtained 

from these two programs for certain classes of axisymmetric bodies 

have been compared with exact solutions or available experimental 

data. Numerical experiments have shown that both methods give 

accurate Cp distributions for general axisymmetric bodies of 

revolution, except that the axial singularity method cannot handle 

bodies with discontinuous surface slopes. For axisymmetric bodies 

which are sufficiently smooth, the axial singularity method is more 

accurate than the surface vortex lattice method. Some important 

features about these two methods will be summarized below. 

The axial singularity method is considered to be a method which 

is quite inexpensive, since little computer memory is required, but 

it has more restrictions on bodY geometry compared to surface 

singularity approaches of solving for the potential flow past an 

axisymmetric body. In the course of analyzing an aircraft 

configuration, the axial singularity method will not be adequate for 

modelling a general fuselage. However, at the preliminary design 
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stage to estimate the interactions between a fuselage of simple 

geometry and the non-planar wing, this method is far more applicable 

than any other numerical approach. By employing higher-order 

singularity distributions, great improvements in the solution 

accuracy and geometry flexibility have been found. Specifically, a 

higher-order axial singularity distribution model has been 

formulated for either axial or cross flow, where constant and linear 

orders in strength variation have been utilized to yield a numerical 

solution. It has been found that panel and control point location 

for the higher-order singularity method can be very important for 

obtaining a good quality solution. Inadequate choice of panelling 

for this technique will yield solutions which are incorrect, as was 

found, for example, using the continuous linearly varying source 

distribution applied to model the flow past a cylindrical body with 

either ogiva1 or ellipsoidal noses. Judgement of the adequacy of 

the solution can be aided by visualizing the variation of source 

strength distribution along the body axis. For ellipsoidal bodies, 

a reliable and accurate panelling technique has been described, 

where the optimal Cp distribution for the axisymmetric flow past a 

general ellipsoid has been found by using cosine spaced, linearly 

varying source distributions with the suggested inset distance 

governed by equation (2.69). The solution accuracy so obtained has a 

root mean square error in pressure coefficient on the order 
-5 of 10 • The same panelling and inset has been found to yield 

comparable solution accuracies for ellipsoids of slenderness ratios 

between 2 and 10 at angles of attack up to 300 degrees. Therefore, 

the inset distance plays a key role in obtaining the optimal Cp 
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solution for blunt nosed bodies. This optimal inset appears to 

depend most strongly upon the local radius of curvature of the body 

nose. A more limited effect of the size of the singularity element 

nearest the nose may also be noted. This discovery can be viewed as 

being contradictory to assertions made by Zedan and Dalton (1980), 

where it was recommended that 1% inset distance be used for all 

ellipsoidal body calculations. Another important feature in the 

present study has been the attempt to obtain solutions for 

axisymmetric bodies with discontinuous surface curvature using the 

axial singularity method. Despite the fact that some reasonably 

good Cp distributions have been obtained from such geometries by 

using a specialized singularity panel size variation consisting of 

cosine panel distributions on the nose and tail, plus two very small 

panels at the ends of the cylinder, no general panelling rule 

applicable to all configurations has been developed at the present 

time. 

Accuracy of the vortex lattice surface panel method implemented 

in the present stuqy has been investigated using various 

axisymmetric configurations. The Cp distributions have been 

compared with exact solutions, experimental data, and results of the 

surface singularity theory. It has been found that the solution 

accuracy is largely dependent upon the panel aspect ratio and the 

control point location. Best results will be obtained by chasing 

the panels to have aspect ratios near unity and taking the minimum 

induced velocity point inside the panel to be the control paint. 

The panel centroid has been found to be an acceptable control point 

location. The local tangential velocity calculation method 
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devleoped in previous works by Kandil et ale (1977); Atta (1978); 

and Asfar et al. (1979), has been extended as documented in Chapter 

3. This modified tangential velocity calculation method allows both 

use of non-rectangular panels and movement of the control point 

location away from the panel center. Comparisons of solutions 

obtained using these different formulations have been displayed. It 

is also found that the present modified equation yields the same 

accuracy Cp distribution as compared to Atta's method, but allows 

more flexibility in control point location. None of these methods 

yield satisfactory Cp distributions at the leeward side of an 

ellipsoidal body nose and tail when the flow is at a moderate angle 

of attack. Next, in Asfar et ale (1979), it has been asserted that 

the vortex lattice surface panel method is more accurate than the 

surface source panel method, since the numerical solutions of the 

vortex lattice method matched experimental data for 30° cone

cylinder much better than for the source method. In the present 

work, it has been proven that this conclusion was incorrect, being 

due to differences in geometries used in the two methods. Error 

sensitivities of this method to locating the control pOints off the 

actual body surface, in the plane of the panel, have not been 

investigated in the present work. 

Since the vortex lattice surface panel method has the ability 

to model an arbitrary body, but required a great deal of 

computational effort, a simplified vortex lattice model based on the 

technique used by Mason et ale (1977), using slender body 

transformation of the actual body slope to a bounding rectangular 

box has been investigated as a part of the present research. A 
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brief description of this study has been given by Shu and Kuhlman 

(1981). Due to difficulty in obtaining an adequate expression for 

the local tangential velocity on the rectangular box, this approach 

has been found to not be fruitful. 

Finally, as previously discussed, the main purpose of the 

present stuqy has been to develop theoretical methods which will 

allow the inclusion of fuselage effects into a pair of existing 

subcritical wing design programs (Kuhlman and Shu, 1981; Kuhlman, 

1983). Both fuselage programs are now ready to be modified for 

addition into the above mentioned design computer programs. Future 

plans are to accomplish this task. 
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APPENDIX A 

MACSYMA INTEGRAL EXPRESSIONS 

Integral expressions, utilized in the axial singularity method 

of Chapter 2, obtained by using the MACSYMA symbolic manipulation 

language (Bogen et a1., 1975) are given below: 

(1) 

(2) 

(3) 

(A.3) 

(4) 
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(5) 

4 2 243 223 
zi +(3xi -3x;~)z; +2x; -6x i ~+6xi ~ -2xi~ 

= 2 2 2 1/2 6 2 2 4 (A.5) 
(z. +x. -2x.~+~) [3z. +(3xi -6x.~+3~ )z. ] 

1 1 1 1 1 1 

(6) 

(A.6) 

(7) 

6 2 2 4 4 3 2 2 3 2 -[2zi + (6x i -6xi~ + 3~ )zi + (6x; -12xi ~ + 9x; ~ -3xi~ )zi + 
=----------------~2-----,2r-----------2~1~/~2--~6-------------------------

(zi + x. -2x.~ + ~) [3z. + 
1 1 1 

(A.7) 
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APPENDIX B 

SELECTION OF CONTROL POINT LOCATION 

FOR VORTEX LATTICE METHOD 

According to Asfar et al. (1979), the most accurate Cp solutions 

will be obtained when the control points have been located so that 

the self-induced velocity due to the closed loop vortex filament at 

its own control point is a minimum. Searching for the correct 

location of this point, of course, is very tedious and requires a 

lot of calculations. In the present study of axisymmetric bodies, 

all panels have been chosen to be planar quadrilaterals with two 

parallel sides and having the other two sides of equal length, 

except at the nose and tail where panels have been chosen to be of 

equilateral triangular shape. Through a series of numerical 

experiments, as shown below, it has been found that choosing the 

control point location to be the centroid of area of each panel can 

be used to replace the original technique without too much 

difference in the solution accuracy. The following two sections are 

designed to show, first, how to compute the coordinates of the 

centroid of area of a typical panel, and second, the difference in 

location of control points calculated for these two methods. 

B.l Determine the Coordinates of the Centroid of Area 

Consider a typical panel as described above, located in local 

cartesian coordinates as shown in Sketch B.1. 
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y 

L --:-____ ~2 ~ 
(0,- ~2) (b ) 

1., - '2 

Sketch 8.1 NOr:Jenclature of a typical panel in 
local cartesian coordlnates 

The local coordinates of the centroid of area are given as 

2a+b 
Xc = (1 - 3(a+b») t 

y = 0 c 

(B .1) 

(B.2) 

The global coordinates can be obtained by performing a simple 

transformation. 

B.2 Difference in Coordinates between the Minimum Self-Induced 
Velocity Point and the Centroid of Area 

The following brief table, obtained from numerical experiments, 

shows that the centroid of area may be used in place of the optimal 

control point location, because small differences exist in control 

point location and induced velocity magnitude. 

87 



Test No. 

2 

3 

4 

5 

6 

88 

Table B.1 Comparisons of the minimum self-induced 
velocity point and the centroid of area 

Centroid Minimum Differences 
of Induced 

Panel Geometry Area Velocity xm-x~% W~-Wm% 
a b i Xc Yc xm Ym L Wm 

2. 4. 5. 2.78 0 2.87 0 1.8 0.6 

o. 4. 6. 4. 0 4.3 0 6.0 1.2 

o. 1.364 2. 1.34 0 1.45 0 5.5 1.2 

1.364 1.819 2. 1.048 0 1.07 0 1.1 0.2 

2.082 2.229 2. 1.011 0 1.04 0 1.45 0.16 

2.229 2.274 2. 1.003 0 1.04 0 1.83 0.3 



APPENDIX C 

CALCULATION OF LOCAL TANGENTIAL VELOCITY 

FOR VORTEX LATTICE METHOD 

When the field piont is on the body surface, one has to account 

for the induced tangential velocity due to the local strength of the 

vortex sheet. The parameters involved in calculating the components 

of the induced tangential velocity in the x and y directions at a 

point P for a rectangular vortex element on the X-Y plane are shown 

in Sketch C.l. With linear interpolation, Kandil et ale (1977) gave 

the expressions for the compoRents of tangential velocit¥ as 

follows: 

y 

Xl t r-i2 

-l x 
f1 

P ~ 

£.1 f4 
'7 vye2 

l f3 

y, ~ 
Y 

~ 

X 
1" e, vx 

Sketch C., Nomenclature of calculating the induced 
tangential velocity 
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+ _ 1 } + r3(x-x1}]e1 (C .1) TVX -~ [r1(x1+11-X 
211 

+ = ~ [r4(Yl+12-Y) + r2(Y-Yl )]e2 (C.2) TVY 
212 

Extension of these two equations to a general, quadrilateral vortex 

element has been given by Atta (1978) as follows: 

(C.3) 

Note that this expression yields a tangential velocity jump which 

either must be interpreted as being constant on the element, or it 

must be understood to apply only at control pOints located at the 

average of the panel corner points. 
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Table 1 

X/L 

.0375 

.0875 

.1375 

.1875 

.2375 

.2875 

.3375 

.3875 

.4375 

.4875 

.5375 

.5875 

.6375 

.6875 

.7375 

.7875 

.8375 

.8875 

.9375 

.9875 

Comparison of the small a solution by Maruhn with the exact 
solution by Lamb for an ellipsoid of SR=5 along top meridian 
line. 

C at a = 50 
p C at a = 100 

P 
MARUHN LAMB DEVIATION MARUHN LAMB DEVIATION 

-.04460 -.04223 -.00236 -.18241 -.17024 -.01217 

-.12783 -.12164 -.00619 -.22203 -.19556 -.02647 

-.14472 -.13736 -.00736 -.21531 -.18466 -.03065 

-.14836 -.14046 -.00790 -.20303 -.17055 -.03248 

-.14747 -.13927 -.00820 -.19002 -.15661 -.03341 

-.14453 -.13615 -.00839 -.17712 -.14322 -.03390 

-.14042 -.13194 -.00847 -.16437 -.13025 -.03412 

-.13549 -.12696 -.00853 -.15163 - .11745 -.03417 

-.12984 -.12130 -.00854 -.13866 -.10457 -.03409 

-.12346 -.11493 -.00853 -.12521 -.09132 -.03389 

-.11622 -.10773 -.00849 -.ll095 -.07737 -.03358 

-.10789 -.09948 -.00841 -.09546 -.06232 -.03314 

-.09811 -.08981 -.00830 -.07815 -.04559 -.03256 

-.08630 -.07815 -.00815 -.05815 -.02639 -.03176 

-.07145 -.06353 -.00792 -.03408 -.00340 -.03068 

-.05174 -.04416 -.00758 -.00348 0.02565 -.02217 

-.02341 -.01636 -.00705 0.03859 0.06531 -.02672 

0.02292 0.02900 -.00608 0.10393 0.12643 -.02250 

0.ll984 0.12366 -.00382 0.23179 0.24468 -.01289 

0.53989 0.53197 -.00793 0.71349 0.67851 -.03497 
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Q. 
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92 

0.6 EXACT SOLUTION BY LAMB (FROM WANG) 

I 
--- SMALL Cl SOLUTION BY MARUHN (FROM I 

SCHLICHTING AND TRUCKENBRODT) I 
\ / 
\ / 

0.0 
\ 0.2 0.4 0.6 __ _ ...... ---- -

x/L 

-0.4 

(a) a - SO 

0.2 

o.o~------__ +-________ ~ ________ ~ ______ ~~~ ______ ~ 

0.2 0.4 -~6=---- . 0.8 1.0 
-0.2 -

x/L 

-0.4 

Figure 1. Comparisons of pressure distribution along top 
meridian l~ne (6 - 0°) at Cl - 5° and Cl - 10°, for 
exact solution and small Cl solution for ell~psoid 
of SR - 5. 



Table 2 Solution accuracy for axial singularity method for axisymmetric flow 
past an ellipsoid of SR=5. 

Inset 
Axial Flow Numerical Arrangement Panell ing Root 

Mean 
Config. Singularity Number of Panelling a/L*lOO Square 

No. Type Elements Scheme Error 

1 CS 10 Equal 0 0.054962 

2 CS 10 Cosine 1 0.001758 

3 CS 20 Equal 0 0.052254 

4 CS 20 Equal 0.5 0.026120 

5 CS 20 Equal 1 0.001695 

6 CS 20 Equal 1.5 0.025122 

7 CS 20 Equal 2 0.040193 

8 CS 20 Cosine 0 0.006483 
> 

9 CS 20 Cosine ' 1 0.000089 

10 CD 20 Equal 1 0.347660 

11 LVD 20 Equal 0 0.052254 

12 LVD 20 Equal 1 0.001688 

13 LVS 20 Equal 1 0.000503 

14 LVS 20 Cosine 1 0.000063 

15 CS 20 Equal 0.75 0.012057 

16 CS 20 Equal 1.75 0.014300 

17 CS 40 Equal 1 0.000062 

18 CS 40 Cosine 1 0.000008 

19 LVS 10 Equal 1 0.000595 
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(b) Piecewise constant doublet and linearly varying doublet. 

Figure 2. Axial singularity strength distribution along body 
axis for ellipsoidal body, SR ~ 5, ~ a 0°, equally 
spaced panels and aIL a 0.01. 
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0.0 

-0.2 

0.4 

0.2 
Q. 

u 
0.0 

-0.2 

EXACT SOLUTION 

AXIAL SINGULARITY METHOD 

x/l 

0.8 1.0 

(a) Piecewise constant source. 

x/L 

0.4 0.6 0.8 1.0 
linearly varying source. 

x/l 

0.4 0.6 0.8 1.0 

Piecewise constant doublet. 

x/l 

0.4 0.6 0.8 1.0 

(d) Linearly varying doublet. 

Figure 3. Pressure coefficient distribut~on from axial 
singularity method along meridian line for 
ellipsoidal body, SR m 5, a mOo, equally 
spaced panels with all m 0.01. 
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Table 3 Comparison of Cp error for various of axial singularity 
types for axisymmetric flow past an ellipsoid of SR=5. 

---------
DEVIATION FROM EXACT SOLUTION x 10-4 

LINEARLY LINEARLY 
CONSTANT VARYING CONSTANT VARYING 

X/L SOURCE SOURCE DOUBLET DOUBLET 

.0375 26.209 -4.542 -1616.645 26.209 

.0875 4.91 -0.910 -449.064 4.909 

.1375 2.075 -0.423 -204.528 2.075 

.1875 1.165 -0.248 -118.926 1.165 

.2375 0.773 -0.168 -79.899 0.774 

.2875 0.571 -0.125 -59.278 0.570 

.3375 0.455 -0.101 -47.489 0.455 

.3875 0.388 -0.086 -40.605 0.388 

.4375 0.352 -0.078 -36.834 0.352 

.4875 0.377 -0.075 -35.347 0.337 

.5375 0.342 -0.076 -35.847 0.342 

.5875 0.366 -0.082 -38.436 0.366 

.6375 0.416 -0.093 -43.657 0.415 

.6875 0.501 -0. 111 -52.766 0.501 

.7375 0.648 -0.144 -68.473 0.648 

.7875 0.913 -0.201 -97.087 0.913 

.8375 1.438 -0.317 -155.847 1.438 

.8875 2.716 -0.600 -306.678 2.715 

.9375 7.094 -1.618 -921. 745 7.090 

.9875 70.616 21.952 -15422.648 69.703 
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Figure 4. Effect of inset of axial singularity 
distribution for an ellipsoid of SR • 5, 
for equally spaced constant source 
panels. 
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Table 4 Solution accuracy for axisymmetric flow past 
ellipsoids, using 20 cosine spaced linearly 
varying axial source panels. 

config. inset root mean 
No. a/L% square root 

1 2 0.146652 
2 3 0.002798 
3 4 0.001519 
4 5 0.000047 
5 6 0.000045 
6 7 0.000078 

(a) Solution accuracy for various inset 
values of SR=2 ellipsoid 

config. inset root mean 
No. a/L% square error 

1 0 0.000330 
2 0.1 0.000597 
3 0.2 0.000301 
4 0.25 0.000004 
5 0.3 0.000381 
6 0.4 0.001423 
7 0.6 0.004844 
8 0.8 0.010803 
9 1.0 0.019887 

(b) Solution accuracy for various inset 
values for SR=10 ell i psoi d 

config. inset root mean 
No. SR a/L% square error 

1 2 6 0.000045 
2 3 2.78 0.000095 
3 4 1.56 0.000106 
4 5 1 0.000063 
5 6 0.7 0.000005 
6 7 0.51 0.000022 
7 8 0.4 0.000061 
8 9 0.3 0.000068 
9 10 0.25 0.000004 

(c) Solution accuracy for various SR 
ell ipsoi ds, using the suggested 
inset value calculated by equation 
(2.69) 
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Table 5 Solution accuracy for axial singularity method for inclined flow 
with 50 angle of attack past an ellipsoid of SR=5; error 
calculated along a = 33.75° meridian line on body surface. 

CROSS FLOW-NUMERICAL ARRANGEMENT 

CONFIG. SINGULARITY ELEMENT PANELLING (a/L)*100 ROOT MEAN 
NO. TYPE NO. SCHEME SQUARE ERROR 

1 CD* 20 EQUAL 0 0.019056 

2 CD* 20 EQUAL 1 0.010986 

3 CD* 20 COSINE 0 0.002012 

4 CD* 20 COSINE 1 0.000117 

5 LVD* 20 EQUAL 0 0.005749 

6 LVD* 20 EQUAL 1 0.000129 

7 LVD* 20 COSINE 0 0.011609 

8 LVD* 20 COSINE 1 0.000088 

9 LVO+ 20 COSINE 1 0.000062 

* - CONFIGURATIONS BASED ON FIXED CONDITIONS IN AXIAL FLOW: 20 DISCRETE 
ELEMENTS, COSINE SPACING, CONSTANT SOURCE WITH aiL = 0.01. 

+ - AXIAL FLOW CHANGED TO 20 DISCRETE ELEMENTS, COSINE SPACING, LINEARLY 
VARYING SOURCE WITH aiL = 0.01, THE OPTIMAL NUMERICAL ARRANGEMENT FOR 
INCLINED FLOW. 
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(b) Cross flow: 20 discrete elements, cosine spaced linearly 
varying doublet with aIL - 0.01. 

Figure 8. Axial singularity strength distribution along body 
axis, for an ellipsoid of SR a 5, at a-30°, for 
optimal panelling. 
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for the optimal panelling. 
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Figure 11. Pressure coefficient distribution from axial 
singularity method along circumferential line 
at x/L a 0.2375 cross section, for an ellipsoid 
of SR a 5, at a s 10°, a-20° and a s 30° for 
the optimal panelling. 
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Table 6 Comparison of Cp from vortex lattice method for various of 
tangential velocity calculation methods for axisymmetric flow 
past an ellipsoid of SR=5, using 8*30 panels, cosine spacing 
axially, and control point located at the average of four 
corner coordinates of each panel. 

Cp Cp NUMERICAL 

x/L EXACT KANDIL ATTA MODIFIDIED 
( 1977 ) (1978) (equ. 3.20) 

.00137 .864390 .9329 .8387 .8387 

.01770 .269314 .2868 .2607 .2607 

.05511 .026309 .0276 .0180 .0180 

.11196 -.057666 -.0629 -.0670 -.0670 

.18577 -.093193 -.1016 -.1035 -.1035 

.27332 -.110248 -.1203 -.1211 -.1211 

.37077 -.118535 -.1295 -.1297 -.1297 

.47387 -.121615 -.1329 -.1329 -.1329 

.57811 -.120616 -.1318 -.1319 -.1319 

.67894 -.115183 -.1258 -.1262 -.1262 

.77195 -.103200 - .1126 -.1138 - .1138 

.85307 -.078821 -.0859 -.0887 -.0887 

.91876 -.025376 -.0280 -.0342 -.0342 

.96616 .113794 .1211 .1057 .1057 

.99317 .539069 .5755 .5286 .5286 
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Table 7 Comparison of Cp from vortex lattice method for various of 
tangential velocity calculation methods for axisymmetric flow 
past an ellipsoid of SR=5, using 8*30 panels, cosine spacing 
axially, and control point located at the centroid of area of 
each panel. 

Cp NUMERICAL 

SCHEME 1* SCHEME 2+ 

x/L Cp KANDIL ATTA MODIFIED ATTA MODIFIED 
EXACT (1977 ) (1978) (equ 3.20) (1978 ) (equ. 3.20) 

.00183 .825989 .9018 .8446 .8446 

.01814 .262712 .2844 .2680 .2601 .2623 .2704 

.05551 .025187 .0320 .0260 .0231 .0234 .0264 

.11231 -.057943 -.0560 -.0585 -.0598 -.0597 -.0584 

.18606 -.093277 -.0936 -.0947 -.0953 -.0953 -.0947 

.27352 -.110274 -.1118 - .1122 -.1125 -.1124 -.1122 

.37089 -.118541 -.1207 -.1208 -.1209 -.1208 -.1208 

.47389 -.121615 -.1240 -.1240 -.1240 -.1240 -.1240 

.57804 -.120619 -.1229 -.1229 - .1230 - .1230 -.1229 

.67877 - .115199 -.1171 - .1173 - .1175 -.1174 - .1173 

.77170 -.103247 -.1043 -.1050 -.1054 -.1053 -.1050 

.85275 -.078971 -.0783 -.0800 -.0809 -.0808 -.0800 

.91838 -.025914 -.0220 -.0259 -.0278 -.0276 -.0257 

.96572 .111215 .1229 .1133 .1086 .1094 .1141 

.99272 .521222 .5696 .5385 .5248 .5397 .5533 

* - CONTROL POINT LOCATED AT THE CENTROID OF AREA OF EACH PANEL. 

+ - CONTROL POINT LOCATED AT THE CENTROID OF AREA OF EACH PANEL, 
EXCEPT TRIANGULAR PANEL AT THE NOSE AND TAIL, WHERE THE CONTROL 
POINT LOCATED AT 3/4 CHORD LENGTH AWAY FROM THE APEX. 
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Table 8 Comparison of Cp from vortex lattice method for various of 
tangential velocity calculation methods for inclined flow, 
a=200 , past an ellipsoid of SR=5, using 12*20 panels, 
cosine spacing axially, and control point located at the 
average of four corner coordinates of each panel. 

S = 7.50 s = 82.50 

x/L EXACT ATTA MODIFIED EXACT ATTA MODIFIED 
(l978 ) (equ. 3.20) (l978 ) (equ. 3.20) 

.003080 -.100442 -.2543 -.2451 .275594 .3048 .3077 

.015320 -.390676 -.4691 -.4609 -.107441 -.1122 -.1101 

.039485 -.386188 -.4482 -.4426 -.288417 -.2935 -.2922 

.074995 -.316861 -.3756 -.3717 -.359549 -.3643 -.3636 

.12097 -.250026 -.3066 -.3038 -.389816 -.3946 -.3941 

.176275 -.192597 -.2472 -.2452 -.403316 -.4081 -.4078 

.239555 -.142936 -.1956 -.1942 -.408920 -.4137 -.4135 

.309250 -.098582 -.1493 -.1483 -.410256 -.4150 -.4148 

.383635 -.057401 -.1062 -.1056 -.408901 -.4135 -.4134 

.460890 -.017586 -.0643 -.0641 -.405509 -.4099 -.4089 

.539110 .022528 -.0221 -.0222 -.400228 -.4043 -.4043 

.616365 .064701 .0224 .0291 -.392826 -.3965 -.3966 

.690750 .111064 .0714 .0705 -.382655 -.3859 -.3860 

.760445 .164558 .1279 .1267 -.368438 -.3711 -.3713 

.823725 .229688 .1967 .1950 -.347721 -.3497 -.3499 

.879030 .313947 .2854 .2833 -.315568 -.3167 -.3168 

.925005 .430552 .4078 .4052 -.261150 -.2612 -.2613 

.960515 .602127 .5874 .5843 .158303 - .1571 -.1570 

.194685 .846020 .8420 .8393 .056286 .0604 .0611 

.996920 .986992 .9907 .9913 .418758 .4687 .4705 
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Table 9 Comparison of Cp from vortex lattice method along e = 7.50 

meridian line for various of tangential velocity calculation 
methods for inclined flow, a = 200 , past an ellipsoid of 
SR=5, using 12*20 panels, cosine spacing axially, and control 
point located at the centroid of area of each panel. 

-
SCHEME 1* SCHEME 2+ 

Cp ATTA MODIFIED ATTA MODIFIED 
x/L EXACT (1978 ) (equ. 3.20) (1978 ) (equ. 3.20) 

.004105 .171617 .0539 .0363 

.016315 -.401517 -.3916 -.4074 -.3412 -.3639 

.040435 -.384262 -.4131 -.4166 -.4092 -.4131 

.07587 -.315345 -.3506 -.3510 -.3496 -.3500 

.12175 -.249073 -.2858 -.2852 -.2854 -.2848 

.176945 -.192009 -.2287 -.2277 -.2285 -.2275 

.240095 -.142561 -.1785 - .1776 -.1783 -.1774 

.30964 -.098351 -.1332 -.1324 -.1331 -.1323 

.383875 -.057274 -.0908 -.0903 -.0907 -.0902 

.46097 -.017545 -.0496 -.0495 -.0496 -.0494 

.53903 -.022487 -.0080 -.0082 -.0079 -.0081 

.616125 .064563 .0359 .0352 .0359 .0353 

.69036 .110795 .0841 .0829 .0842 .0830 

.759905 .164089 .1389 .1379 .1399 .1380 

.823055 .228870 .2075 .2046 .2076 .2047 

.87825 .312452 .2947 .2905 .2949 .2907 

.92413 .427582 .4146 .4086 .4150 .4089 

.959565 .595590 .5899 .5810 .5905 .5817 

.983685 .831918 .8364 .8252 .8361 .8250 

.995895 .992848 .9903 .9932 

* - CONTROL POINT LOCATED AT THE CENTROID OF AREA OF EACH PANEL. 
+ - CONTROL POINT LOCATED AT THE CENTROID OF AREA OF EACH PANEL 

EXCEPT TRIANGULAR PANEL AT THE NOSE AND TAIL, WHERE THE 
CONTROL POINT LOCATED AT 3/4 CHORD LENGTH AWAY FROM THE APEX. 
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Table 10 Comparison of Cp from vortex lattice method along e = 82.50 

meridian line for various of tangential velocity calculation 
methods for inclined flow, a = 200 , past an ellipsoid of 
SR=5, using 12*20 panels, cosine spacing axially, and control 
point located at the centroid of area of each panel. 

- -
SCHEME 1* SCHEME 2+ 

Cp ATTA MODIFIED ATTA MODIFIED 
x/L EXACT (1978 ) (equ. 3.20) (1978 ) (egu. 3.20) 

.004105 .214953 .1146 .2799 

.016315 -.122094 - .1164 -.1162 -.0979 -.1002 

.040435 -.291783 -.2878 -.2896 -.2859 -.2878 

.07587 -.360491 -.3545 -.3555 -.3539 -.3550 

.12175 -.390117 -.3827 -.3832 -.3824 -.3830 

.176945 -.403413 -.3951 -.3954 -.3950 -.3952 

.240095 -.408945 -.4001 -.4002 -.4000 -.4000 

.30964 -.410255 -.4010 -.4010 -.4009 -.4009 

.383875 -.408893 -.3993 -.3992 -.3992 -.3992 

.46097 -.405505 -.3956 -.3956 -.3956 -.3956 

.53903 -.400234 -.3901 -.3902 -.3901 -.3901 

.616125 -.392853 -.3826 -.3827 -.3825 -.3826 

.69036 -.382720 -.3724 -.3726 -.3723 -.3725 

.759905 -.368574 -.3582 -.3586 -.3581 -.3585 

.823055 -.348004 -.3377 -.3385 -.3375 -.3383 

.87825 -.316190 -.3063 -.3075 -.3060 -.3072 

.92413 -.262683 -.2537 -.2555 -.2532 -.2550 

.959565 -.162783 -.1558 -.1582 -.1543 -.1569 

.983685 .040291 .0453 .0460 .0571 .0563 

.995895 .368258 .2520 .4155 

* - CONTROL POINT LOCATED AT THE CENTROID OF AREA OF EACH PANEL. 
+ - CONTROL POINT LOCATED AT THE CENTROID OF AREA OF EACH PANEL 

EXCEPT TRIANGULAR PANEL AT THE NOSE AND TAIL, WHERE THE 
CONTROL POINT LOCATED AT 3/4 CHORD LENGTH AWAY FROM THE APEX. 
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Figure 14. Pressure coefficient distributions from vortex lattice method 
along various meridian lines for ellipsoidal body, SR .. 5, 
a" 20°, using modified tangential veloc~ty calculation 
method. 
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a SR 8 5, modified ellipsoid given by equation (4.1), 
using 20 cosine spaced, constant and linearly varying 
axial sources. 
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axisymmetric flow past a SR - 4. Ogival body of 
revolution. using 20 equal spaced. constant and 
linearly varying axial sources. 
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Figure 20. Pressure coefficient distribut~on along meridian l~ne 
for axisymmetric flow past a cylindrical body with 
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singularity method, and vortex lattice surface 
panel method. 
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Figure 21. Pressure coefficient distribution along meridian line for 
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panel method. 
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flow past a cylindrical body with SR = 2 ellipsoidal nose, using axial 
singularity method, and vortex lattice surface panel method. 
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Figure 24. Pressure coefficient distribution along meridian line 
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vortex lattice surface panel method. 
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Figure 25. Pressure coefficient distribution along e • 45° 
meridian line for flow at a-20° past a 30° 
cone-cylinder for vortex lattice surface panel 
method. 
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Figure 26. Pressure coefficient distribution along e ~ 900 
meridian line for flow at a a 20° past a 30° 
cone-cylinder for vortex lattice surface panel 
method. 
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Figure 27. Pressure coefficient distribution along e - 1350 

meridian line for flow at a-20° past a 30° 
cone-cylinder for vortex lattice surface panel 
method. 

127 



EXl'ERD1ENT;\L D.!1TA BY J()HNSON (1963); M ~ 0.18 

-1.0 o 
c:J 

x/R • 0.68 

x/R ... 1.47 

1.0 

r 

x 
I 
I 

x/R - 0.68 x/R - 1.47 

SURFACE S OORCE METHOD OF HES S 
(1967) 

--- SURFACE VORTEX LATTICE METHOD 
(PRESENT) 

Figure 28. Pressure coefficient distribution along circumferential 
lines on cone for flow at a • 20 0 past a 30 0 cone
cylinder for vortex lattice surface panel method. 
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