247 research outputs found

    A Semidefinite Approach for Truncated K-Moment Problems

    Full text link
    A truncated moment sequence (tms) of degree d is a vector indexed by monomials whose degree is at most d. Let K be a semialgebraic set.The truncated K-moment problem (TKMP) is: when does a tms y admit a positive Borel measure supported? This paper proposes a semidefinite programming (SDP) approach for solving TKMP. When K is compact, we get the following results: whether a tms y of degree d admits a K-measure or notcan be checked via solving a sequence of SDP problems; when y admits no K-measure, a certificate will be given; when y admits a K-measure, a representing measure for y would be obtained from solving the SDP under some necessary and some sufficient conditions. Moreover, we also propose a practical SDP method for finding flat extensions, which in our numerical experiments always finds a finitely atomic representing measure for a tms when it admits one

    The possible shapes of numerical ranges

    Get PDF
    Which convex subsets of the complex plane are the numerical range W(A of some matrix A? This paper gives a precise characterization of these sets. In addition to this we show that for any A there exists a symmetric matrix B of the same size such that W(A)=W(B).Comment: 4 page

    Matrix Convex Hulls of Free Semialgebraic Sets

    Full text link
    This article resides in the realm of the noncommutative (free) analog of real algebraic geometry - the study of polynomial inequalities and equations over the real numbers - with a focus on matrix convex sets CC and their projections C^\hat C. A free semialgebraic set which is convex as well as bounded and open can be represented as the solution set of a Linear Matrix Inequality (LMI), a result which suggests that convex free semialgebraic sets are rare. Further, Tarski's transfer principle fails in the free setting: The projection of a free convex semialgebraic set need not be free semialgebraic. Both of these results, and the importance of convex approximations in the optimization community, provide impetus and motivation for the study of the free (matrix) convex hull of free semialgebraic sets. This article presents the construction of a sequence C(d)C^{(d)} of LMI domains in increasingly many variables whose projections C^(d)\hat C^{(d)} are successively finer outer approximations of the matrix convex hull of a free semialgebraic set Dp={X:p(X)0}D_p=\{X: p(X)\succeq0\}. It is based on free analogs of moments and Hankel matrices. Such an approximation scheme is possibly the best that can be done in general. Indeed, natural noncommutative transcriptions of formulas for certain well known classical (commutative) convex hulls does not produce the convex hulls in the free case. This failure is illustrated on one of the simplest free nonconvex DpD_p. A basic question is which free sets S^\hat S are the projection of a free semialgebraic set SS? Techniques and results of this paper bear upon this question which is open even for convex sets.Comment: 41 pages; includes table of contents; supplementary material (a Mathematica notebook) can be found at http://www.math.auckland.ac.nz/~igorklep/publ.htm

    Geometry of free loci and factorization of noncommutative polynomials

    Get PDF
    The free singularity locus of a noncommutative polynomial f is defined to be the sequence Zn(f)={XMng:detf(X)=0}Z_n(f)=\{X\in M_n^g : \det f(X)=0\} of hypersurfaces. The main theorem of this article shows that f is irreducible if and only if Zn(f)Z_n(f) is eventually irreducible. A key step in the proof is an irreducibility result for linear pencils. Apart from its consequences to factorization in a free algebra, the paper also discusses its applications to invariant subspaces in perturbation theory and linear matrix inequalities in real algebraic geometry.Comment: v2: 32 pages, includes a table of content
    corecore