The Possible Shapes of Numerical Ranges

J. William Helton
I. M. Spitkovsky

William \& Mary, imspitkovsky@gmail.com

Follow this and additional works at: https://scholarworks.wm.edu/aspubs

Recommended Citation

Helton, J. W., \& Spitkovsky, I. M. (2011). The possible shapes of numerical ranges. arXiv preprint arXiv:1104.4587.

This Article is brought to you for free and open access by the Arts and Sciences at W\&M ScholarWorks. It has been accepted for inclusion in Arts \& Sciences Articles by an authorized administrator of W\&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

THE POSSIBLE SHAPES OF NUMERICAL RANGES

J. William Helton and I. M. Spitkovsky

Abstract

Which convex subsets of \mathbb{C} are the numerical range $W(A)$ of some matrix A ? This paper gives a precise characterization of these sets. In addition to this we show that for any A there exists a symmetric B of the same size such that $W(A)=W(B)$ thereby settling an open question from [2].

Mathematics subject classification (2010): Primary 47A12.
Keywords and phrases: Numerical range, linear matrix inequalities.

REFERENCES

[1] A. Ben-Tal and A. Nemirovski, Lectures on modern convex optimization, MPS/SIAM Series on Optimization, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001, Analysis, algorithms, and engineering applications.
[2] W.-S. Cheung, X. Liu, and T.-Y. Tam, Multiplicities, boundary points, and joint numerical ranges, Operators and Matrices 5, 1 (2011), 41-52.
[3] K. E. Gustafson and D. K. M. RaO, Numerical range. The field of values of linear operators and matrices, Springer, New York, 1997.
[4] J. W. Helton and V. Vinnikov, Linear matrix inequality representation of sets, Comm. Pure Appl. Math. 60, 5 (2007), 654-674.
[5] D. Henrion, Semidefinite geometry of the numerical range, Electron. J. Linear Algebra 20 (2010), 322-332.
[6] R. A. Horn and C. R. Johnson, Topics in matrix analysis, Cambridge University Press, Cambridge, 1991.
[7] R. Kippenhahn, Über den Wertevorrat einer Matrix, Math. Nachr. 6 (1951), 193-228.
[8] R. Kippenhahn, On the numerical range of a matrix, Linear Multilinear Algebra 56, 1-2 (2008), 185-225; Translated from the German by Paul F. Zachlin and Michiel E. Hochstenbach [MR0059242].
[9] R. T. Rockafellar, Convex analysis, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997, Reprint of the 1970 original, Princeton Paperbacks.
[10] P. Rostlaski and B. Sturmfels, Dualities in convex algebraic geometry, Rendiconti di Mathematica, Serie VII 30 (2010), 285-327.

