705 research outputs found
Fast orthogonal least squares algorithm for efficient subset model selection
Abstract-An efficient implementation of the orthogonal least squares algorithm for subset model selection is derived in this correspondence. Computational complexity of the algorithm is examined and the result shows that this new fast orthogonal least squares algorithm significantly reduces computational requirements. This error reduction ratio provides a criterion for forward subset selection. At the beginning of the 11th stage of the selection procedure, X has been transformed into Xââ- â = [WI... wI,- I xj,â-â)... x::;-â)] and y into y(/â-â), The 11th stage consists of i) For p 5 j 5.If, compute ii) 1
Source Coding Problems with Conditionally Less Noisy Side Information
A computable expression for the rate-distortion (RD) function proposed by
Heegard and Berger has eluded information theory for nearly three decades.
Heegard and Berger's single-letter achievability bound is well known to be
optimal for \emph{physically degraded} side information; however, it is not
known whether the bound is optimal for arbitrarily correlated side information
(general discrete memoryless sources). In this paper, we consider a new setup
in which the side information at one receiver is \emph{conditionally less
noisy} than the side information at the other. The new setup includes degraded
side information as a special case, and it is motivated by the literature on
degraded and less noisy broadcast channels. Our key contribution is a converse
proving the optimality of Heegard and Berger's achievability bound in a new
setting. The converse rests upon a certain \emph{single-letterization} lemma,
which we prove using an information theoretic telescoping identity {recently
presented by Kramer}. We also generalise the above ideas to two different
successive-refinement problems
Search for Gamma-Ray Burst Classes with the RHESSI Satellite
A sample of 427 gamma-ray bursts (GRBs), measured by the RHESSI satellite, is
studied statistically with respect to duration and hardness ratio. Standard
statistical tests are used, such as , F-test and the maximum likelihood
ratio test, in order to compare the number of GRB groups in the RHESSI database
with that of the BATSE database. Previous studies based on the BATSE Catalog
claim the existence of an intermediate GRB group, besides the long and short
groups. Using only the GRB duration as information and or
F-test, we have not found any statistically significant intermediate group in
the RHESSI data. However, maximum likelihood ratio test reveals a significant
intermediate group. Also using the 2-dimensional hardness / plane, the
maximum likelihood analysis reveals a significant intermediate group. Contrary
to the BATSE database, the intermediate group in the RHESSI data-set is harder
than the long one. The existence of an intermediate group follows not only from
the BATSE data-set, but also from the RHESSI one.Comment: Accepted for publication in Astronomy and Astrophysics, 9 pages, 4
figure
A 3D full-field study of cracks in a nuclear graphite under mode I and mode II cyclic dwell loading conditions
Threeâdimensional (3D) fullâfield deformation around crack tips in a nuclear graphite has been studied under mode I and mode II cyclic dwell loading conditions using digital volume correlation (DVC) and integrated finite element (FE) analysis. A cracked Brazilian disk specimen of Gilsocarbon graphite was tested at selected loading angles to achieve mode I and mode II cyclic dwell loading conditions. Integrated FE analysis was carried out with the 3D displacement fields measured by DVC injected into the FE model, from which the crack driving force Jâintegral was obtained using a damaged plasticity material model. The evolution of nearâtip strains and the Jâintegral during the cyclic dwell loading was examined. Under cyclic dwell, residual strain accumulation was observed for the first time. The results shed some light on the effect of dwell time on the 3D crack deformation and crack driving force in Gilsocarbon under cyclic mode I and II loading conditions
Characterisation of fatigue crack tip field in the presence of significant plasticity
Characterisation of a fatigue crack tip in the presence of significant plasticity has been challenging due to the lack of suitable tools and lack of knowledge of material constitutive information under cyclic loading. In this paper, Digital Image Correlation (DIC) and integrated finite element (FE) analyses have been used to characterise the crack-tip field beyond the small-scale yielding (SSY) regime in a stainless steel 316L of a compact-tension (CT) specimen under mode I loading conditions. The non-linear characteristics of the near-tip deformation field were verified by the poor fit to the Williamâs regression and the overestimation of the stress intensity factor K. The extent of the crack tip plasticity was estimated using a detailed constitutive material model and compared with the estimated by Irwin. The displacement fields local to a stationary fatigue crack were mapped using DIC, and inputted into the FE model as boundary conditions so that an integrated FE analysis was carried out. Fatigue pre-cracking was simulated in the FE analysis prior to the full-field analysis of the fatigue crack tip, including stress/strain distributions ahead of the crack tip and the crack opening displacement (COD) under selected loading conditions. Although a distinct âkneeâ was captured as an indication of crack opening from the compliance curves in both the DIC measurements and the FE analyses, consistent with the existing knowledge on the phenomenon of crack closure, it does not appear to correlate with the crack driving force measured by the J-integral
- âŠ