1,726 research outputs found

    Aging to Equilibrium Dynamics of SiO2

    Get PDF
    Molecular dynamics computer simulations are used to study the aging dynamics of SiO2 (modeled by the BKS model). Starting from fully equilibrated configurations at high temperatures T_i =5000K/3760K the system is quenched to lower temperatures T_f=2500K, 2750K, 3000K, 3250K and observed after a waiting time t_w. Since the simulation runs are long enough to reach equilibrium at T_f, we are able to study the transition from out-of-equilibrium to equilibrium dynamics. We present results for the partial structure factors, for the generalized incoherent intermediate scattering function C_q(t_w, t_w+t), and for the mean square displacement msd(t_w,t_w+t). We conclude that there are three different t_w regions: (I) At very short waiting times, C_q(t_w, t_w+t) decays very fast without forming a plateau. Similarly msd(t_w,t_w+t) increases without forming a plateau. (II) With increasing t_w a plateau develops in C_q(t_w, t_w+t) and msd(t_w,t_w+t). For intermediate waiting times the plateau height is independent of t_w and T_i. Time superposition applies, i.e. C_q=C_q(t/t_r) where t_r=t_r(t_w) is a waiting time dependent decay time. Furthermore C_q=C(q,t_w,t_w+t) scales as C_q=C(q,z(t_w,t) where z is a function of t_w and t only, i.e. independent of q. (III) At large t_w the system reaches equilibrium, i.e. C_q(t_w,t_w+t) and msd(t_w,t_w+t) are independent of t_w and T_i. For C_q(t_w,t_w+t) we find that the time superposition of intermediate waiting times (II) includes the equilibrium curve (III).Comment: 9 pages, 11 figures, submission to PR

    Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica

    Get PDF
    A high-resolution ice-core record of atmospheric CO2 concentration over the Holocene epoch shows that the global carbon cycle has not been in steady state during the past 11,000 years. Analysis of the CO2 concentration and carbon stable-isotope records, using a one-dimensional carbon-cycle model,uggests that changes in terrestrial biomass and sea surface temperature were largely responsible for the observed millennial-scale changes of atmospheric CO2 concentrations

    The CO\u3csub\u3e2\u3c/sub\u3e Concentration of Air Trapped in Greenland Ice Sheet Project 2 Ice Formed During Periods of Rapid Climate Change

    Get PDF
    The CO2 content of air occluded in Greenland Ice Sheet Project 2 (GISP2) ice formed over two separate intervals of rapidly changing climate, centered at approximately 46 and 63 kyr B. P., is as much as 90 ppm more during warm periods (interstadials) than during cold periods (stadials). These CO2 variations are superimposed on changes in annual layer thickness and δ18O of the ice and do not show the 200- to 700-year offsets which would be expected for concurrent variations in the atmosphere and the ice. The CO2 concentrations during the stadials are similar to the atmospheric values recorded by Antarctic ice of the same age, so processes occurring in the ice after bubble enclosure must be enriching the air trapped in GISP2 ice formed during the interstadials. This conclusion is supported by Ca content and electrical conductivity measurements of the ice, which show that adequate carbonate is present to produce these enrichments and that CO2 content is high only when the electrical conductivity (a proxy for H+ concentration) is high. High-resolution mapping of one 4-cm section of ice shows a 200-ppm increase in the CO2 content of the trapped air, from approximately 275 to 475 ppm. Analyses of the total inorganic carbon of ice from both the LGM and Holocene show that most of the Ca in the ice is from CaCO3 and that the δ13CO2 approaches that of soil and marine carbonates. These results show that the CO2 record preserved in ice can be altered by in situ decarbonation reactions and that only ice containing either abundant carbonate or essentially no carbonate contains a reliable record of paleoatmospheric CO2

    Nonlinear interfacial waves in a constant-vorticity planar flow over variable depth

    Full text link
    Exact Lagrangian in compact form is derived for planar internal waves in a two-fluid system with a relatively small density jump (the Boussinesq limit taking place in real oceanic conditions), in the presence of a background shear current of constant vorticity, and over arbitrary bottom profile. Long-wave asymptotic approximations of higher orders are derived from the exact Hamiltonian functional in a remarkably simple way, for two different parametrizations of the interface shape.Comment: revtex, 4.5 pages, minor corrections, summary added, accepted to JETP Letter

    CO(2) Diffusion in Polar Ice: Observations from Naturally Formed CO(2) Spikes in the Siple Dome (Antarctica) Ice Core

    Get PDF
    One common assumption in interpreting ice-core CO(2) records is that diffusion in the ice does not affect the concentration profile. However, this assumption remains untested because the extremely small CO(2) diffusion coefficient in ice has not been accurately determined in the laboratory. In this study we take advantage of high levels of CO(2) associated with refrozen layers in an ice core from Siple Dome, Antarctica, to study CO(2) diffusion rates. We use noble gases (Xe/Ar and Kr/Ar), electrical conductivity and Ca(2+) ion concentrations to show that substantial CO(2) diffusion may occur in ice on timescales of thousands of years. We estimate the permeation coefficient for CO(2) in ice is similar to 4 x 10(-21) mol m(-1) s(-1) Pa(-1) at -23 degrees C in the top 287 m (corresponding to 2.74 kyr). Smoothing of the CO(2) record by diffusion at this depth/age is one or two orders of magnitude smaller than the smoothing in the firn. However, simulations for depths of similar to 930-950m (similar to 60-70 kyr) indicate that smoothing of the CO(2) record by diffusion in deep ice is comparable to smoothing in the firn. Other types of diffusion (e.g. via liquid in ice grain boundaries or veins) may also be important but their influence has not been quantified

    Synthesizing gas-filled fiber Raman lines enables access to the molecular fingerprint region

    Full text link
    The synthesis of multiple narrow optical spectral lines, precisely and independently tuned across the near- to mid-infrared (IR) region, is a pivotal research area that enables selective and real-time detection of trace gas species within complex gas mixtures. However, existing methods for developing such light sources suffer from limited flexibility and very low pulse energy, particularly in the mid-IR domain. Here, we introduce a new concept based on the gas-filled anti-resonant hollow-core fiber (ARHCF) technology that enables the synthesis of multiple independently tunable spectral lines with high pulse energy of >1 {\mu}J and a few nanoseconds pulse width in the near- and mid-IR region. The number and wavelengths of the generated spectral lines can be dynamically reconfigured. A proof-of-concept laser beam synthesized of two narrow spectral lines at 3.99 {\mu}m and 4.25 {\mu}m wavelengths is demonstrated and combined with photoacoustic (PA) modality for real-time SO2 and CO2 detection. The proposed concept also constitutes a promising way for IR multispectral microscopic imaging.Comment: 39 page

    Record Drilling Depth Struck in Greenland

    Get PDF
    On July 1, 1993, after 5 years of drilling, the Greenland Ice Sheet Project (GISP2) penetrated several meters of silty ice and reached bedrock at a depth of 3053.4 m. It then penetrated 1.5 m into the bedrock, producing the deepest ice core ever recovered (Figure 1). In July 1992, a nearby European ice coring effort, the Greenland Ice Core Project (GRIP), reached an ice depth of 3028.8 m, providing more than 250,000 years of record. Comparisons between these ice core records have already demonstrated the remarkable reproducibility of the upper ∼90% of the records unparalleled view of climatic and environmental change
    corecore