4,520 research outputs found
Procedure for generating global atmospheric engine emissions data from future supersonic transport aircraft. The 1990 high speed civil transport studies
The input for global atmospheric chemistry models was generated for baseline High Speed Civil Transport (HSCT) configurations at Mach 1.6, 2.2, and 3.2. The input is supplied in the form of number of molecules of specific exhaust constituents injected into the atmosphere per year by latitude and by altitude (for 2-D codes). Seven exhaust constituents are currently supplied: NO, NO2, CO, CO2, H2O, SO2, and THC (Trace Hydrocarbons). An eighth input is also supplied, NO(x), the sum of NO and NO2. The number of molecules of a given constituent emitted per year is a function of the total fuel burned by a supersonic fleet and the emission index (EI) of the aircraft engine for the constituent in question. The EIs for an engine are supplied directly by the engine manufacturers. The annual fuel burn of a supersonic fleet is calculated from aircraft performance and economic criteria, both of which are strongly dependent on basic design parameters such as speed and range. The altitude and latitude distribution of the emission is determined based on 10 Intern. Air Transport Assoc. (IATA) regions chosen to define the worldwide route structure for future HSCT operations and the mission flight profiles
Analysis of information systems for hydropower operations
The operations of hydropower systems were analyzed with emphasis on water resource management, to determine how aerospace derived information system technologies can increase energy output. Better utilization of water resources was sought through improved reservoir inflow forecasting based on use of hydrometeorologic information systems with new or improved sensors, satellite data relay systems, and use of advanced scheduling techniques for water release. Specific mechanisms for increased energy output were determined, principally the use of more timely and accurate short term (0-7 days) inflow information to reduce spillage caused by unanticipated dynamic high inflow events. The hydrometeorologic models used in predicting inflows were examined to determine the sensitivity of inflow prediction accuracy to the many variables employed in the models, and the results used to establish information system requirements. Sensor and data handling system capabilities were reviewed and compared to the requirements, and an improved information system concept outlined
Hot Populations in M87 Globular Clusters
We have obtained HST/STIS far- and near-UV photometry of globular clusters in
four fields in the gE galaxy M87. To a limit of m(FUV) = 25 we detect a total
of 66 globular clusters (GCs) in common with the deep HST optical-band study of
Kundu et al. (1999). Despite strong overlap in V- and I-band properties, the
M87 GCs have UV/optical properties that are distinct from clusters in the Milky
Way and in M31. M87 clusters, especially metal-poor ones, produce larger hot HB
populations than do Milky Way analogues. Cluster mass is probably not a factor
in these distinctions. The most metal-rich M87 GCs in our sample are near Z_sun
and overlap the local E galaxy sample in estimated Mg_2 line indices.
Nonetheless, the clusters produce much more UV light at a given Mg_2, being up
to 1 mag bluer than any gE galaxy in (FUV-V) color. The M87 GCs do not appear
to represent a transition between Milky Way-type clusters and E galaxies. The
differences are in the correct sense if the clusters are significantly older
than the E galaxies. Comparisons with Galactic open clusters indicate that the
hot stars lie on the extreme horizontal branch, rather than being blue
stragglers, and that the EHB becomes well populated for ages > 5 Gyr. We find
that 43 of our UV detections have no optical-band counterparts. Most appear to
be UV-bright background galaxies, seen through M87. Eleven NUV variable sources
detected at only one epoch in the central field are probably classical novae.
[Abridged]Comment: 70 pages, 25 figures (including 4 jpgs), 7 tables. To appear in AJ.
Full resolution version available at
http://www.astro.virginia.edu/~rwo/m87/m87-hotpops.pd
Arp 65 interaction debris: massive HI displacement and star formation
Context: Pre-merger interactions between galaxies can induce significant
changes in the morphologies and kinematics of the stellar and ISM components.
Large amounts of gas and stars are often found to be disturbed or displaced as
tidal debris. This debris then evolves, sometimes forming stars and
occasionally tidal dwarf galaxies. Here we present results from our HI study of
Arp 65, an interacting pair hosting extended HI tidal debris. Aims: In an
effort to understand the evolution of tidal debris produced by interacting
pairs of galaxies, including in situ star and tidal dwarf galaxy formation, we
are mapping HI in a sample of interacting galaxy pairs. The Arp 65 pair is one
of them. Methods: Our resolved HI 21 cm line survey is being carried out using
the Giant Metrewave Radio Telescope (GMRT). We used our HI survey data as well
as available SDSS optical, Spitzer infra-red and GALEX UV data to study the
evolution of the tidal debris and the correlation of HI with the star-forming
regions within it. Results: In Arp 65 we see a high impact pre-merger
interaction involving a pair of massive galaxies (NGC 90 and NGC 93) that have
a stellar mass ratio of ~ 1:3. The interaction, which probably occurred ~ 1.0
-- 2.5 10 yr ago, appears to have displaced a large fraction of
the HI in NGC 90 (including the highest column density HI) beyond its optical
disk. We also find extended ongoing star formation in the outer disk of NGC 90.
In the major star-forming regions, we find the HI column densities to be ~ 4.7
10 cm or lower. But no signature of star formation was
found in the highest column density HI debris, SE of NGC 90. This indicates
conditions within the highest column density HI debris remain hostile to star
formation and it reaffirms that high HI column densities may be a necessary but
not sufficient criterion for star formation.Comment: Accepted in A&
Critical Currents of Josephson-Coupled Wire Arrays
We calculate the current-voltage characteristics and critical current
I_c^{array} of an array of Josephson-coupled superconducting wires. The array
has two layers, each consisting of a set of parallel wires, arranged at right
angles, such that an overdamped resistively-shunted junction forms wherever two
wires cross. A uniform magnetic field equal to f flux quanta per plaquette is
applied perpendicular to the layers. If f = p/q, where p and q are mutually
prime integers, I_c^{array}(f) is found to have sharp peaks when q is a small
integer. To an excellent approximation, it is found in a square array of n^2
plaquettes, that I_c^{array}(f) \propto (n/q)^{1/2} for sufficiently large n.
This result is interpreted in terms of the commensurability between the array
and the assumed q \times q unit cell of the ground state vortex lattice.Comment: 4 pages, 4 figure
Compatibility of The Dimensions of Polymer Molecular Aggregates to The Pore Throat of a Reservoir
The compatibility of the dimensions of the polymer molecular aggregates and the pore throat of the reservoir were studied. The W section of Tuha oilfield was the study area and polymers produced by Daqing Refining and Chemical Company were used. The permeability limit of the polymer molecules with different molecular masses and concentrations, matching relationship between the dimension of polymer molecular aggregates and pore throat were obtained by experiments. The results of the research are important for the development and implementation of a polymer flooding technical scheme in the middle and late stages of the operation of the Tuha oilfield
Anti-phase locking in a two-dimensional Josephson junction array
We consider theoretically phase locking in a simple two-dimensional Josephson
junction array consisting of two loops coupled via a joint line transverse to
the bias current. Ring inductances are supposed to be small, and special
emphasis is taken on the influence of external flux. Is is shown, that in the
stable oscillation regime both cells oscillate with a phase shift equal to
(i.e. anti-phase). This result may explain the low radiation output
obtained so far in two-dimensional Josephson junction arrays experimentally.Comment: 11 pages, REVTeX, 1 Postscript figure, Subm. to Appl. Phys. Let
Scalable Mining of Common Routes in Mobile Communication Network Traffic Data
A probabilistic method for inferring common routes from mobile communication network traffic data is presented. Besides providing mobility information, valuable in a multitude of application areas, the method has the dual purpose of enabling efficient coarse-graining as well as anonymisation by mapping individual sequences onto common routes. The approach is to represent spatial trajectories by Cell ID sequences that are grouped into routes using locality-sensitive hashing and graph clustering. The method is demonstrated to be scalable, and to accurately group sequences using an evaluation set of GPS tagged data
Husimi Maps in Lattices
We build upon previous work that used coherent states as a measurement of the
local phase space and extended the flux operator by adapting the Husimi
projection to produce a vector field called the Husimi map. In this article, we
extend its definition from continuous systems to lattices. This requires making
several adjustments to incorporate effects such as group velocity and multiple
bands. Several phenomena which uniquely occur in lattice systems, like
group-velocity warping and internal Bragg diffraction, are explained and
demonstrated using Husimi maps. We also show that scattering points between
bands and valleys can be identified in the divergence of the Husimi map
- …