1,461 research outputs found

    Quality of Diabetes Care in U.S. Academic Medical Centers: Low rates of medical regimen change

    Get PDF
    To assess both standard and novel diabetes quality measures in a national sample of U.S. academic medical centers

    Genome-Wide Association with Select Biomarker Traits in the Framingham Heart Study

    Get PDF
    BACKGROUND: Systemic biomarkers provide insights into disease pathogenesis, diagnosis, and risk stratification. Many systemic biomarker concentrations are heritable phenotypes. Genome-wide association studies (GWAS) provide mechanisms to investigate the genetic contributions to biomarker variability unconstrained by current knowledge of physiological relations. METHODS: We examined the association of Affymetrix 100K GeneChip single nucleotide polymorphisms (SNPs) to 22 systemic biomarker concentrations in 4 biological domains: inflammation/oxidative stress; natriuretic peptides; liver function; and vitamins. Related members of the Framingham Offspring cohort (n = 1012; mean age 59 ± 10 years, 51% women) had both phenotype and genotype data (minimum-maximum per phenotype n = 507–1008). We used Generalized Estimating Equations (GEE), Family Based Association Tests (FBAT) and variance components linkage to relate SNPs to multivariable-adjusted biomarker residuals. Autosomal SNPs (n = 70,987) meeting the following criteria were studied: minor allele frequency ≥ 10%, call rate ≥ 80% and Hardy-Weinberg equilibrium p ≥ 0.001. RESULTS: With GEE, 58 SNPs had p < 10-6: the top SNPs were rs2494250 (p = 1.00*10-14) and rs4128725 (p = 3.68*10-12) for monocyte chemoattractant protein-1 (MCP1), and rs2794520 (p = 2.83*10-8) and rs2808629 (p = 3.19*10-8) for C-reactive protein (CRP) averaged from 3 examinations (over about 20 years). With FBAT, 11 SNPs had p < 10-6: the top SNPs were the same for MCP1 (rs4128725, p = 3.28*10-8, and rs2494250, p = 3.55*10-8), and also included B-type natriuretic peptide (rs437021, p = 1.01*10-6) and Vitamin K percent undercarboxylated osteocalcin (rs2052028, p = 1.07*10-6). The peak LOD (logarithm of the odds) scores were for MCP1 (4.38, chromosome 1) and CRP (3.28, chromosome 1; previously described) concentrations; of note the 1.5 support interval included the MCP1 and CRP SNPs reported above (GEE model). Previous candidate SNP associations with circulating CRP concentrations were replicated at p < 0.05; the SNPs rs2794520 and rs2808629 are in linkage disequilibrium with previously reported SNPs. GEE, FBAT and linkage results are posted at . CONCLUSION: The Framingham GWAS represents a resource to describe potentially novel genetic influences on systemic biomarker variability. The newly described associations will need to be replicated in other studies.National Heart, Lung, and Blood Institute's Framingham Heart Study (N01-HC25195); National Institutes of Health National Center for Research Resources Shared Instrumentation grant (1S10RR163736-01A1); National Institutes of Health (HL064753, HL076784, AG028321, HL71039, 2 K24HL04334, 1K23 HL083102); Doris Duke Charitable Foundation; American Diabetes Association Career Developement Award; National Center for Research Resources (GCRC M01-RR01066); US Department of Agriculture Agricultural Research Service (58-1950-001, 58-1950-401); National Institute of Aging (AG14759

    Diabetes Risk Perception and Intention to Adopt Healthy Lifest yles Among Primary Care Patients

    Get PDF
    OBJECTIVE—To examine perceived risk of developing diabetes in primary care patients. RESEARCH DESIGN AND METHODS—We recruited 150 nondiabetic primary care patients. We made standard clinical measurements, collected fasting blood samples, and used the validated Risk Perception Survey for Developing Diabetes questionnaire. RESULTS—Patients with high perceived risk were more likely than those with low perceived risk to have a family history of diabetes (68 vs. 18%; P < 0.0001) and to have metabolic syndrome (53 vs. 35%; P = 0.04). However, patients with high perceived risk were not more likely to have intentions to adopt healthier lifestyle in the coming year (high 26.0% vs. low 29.2%; P = 0.69). CONCLUSIONS—Primary care patients with higher perceived risk of diabetes were at higher actual risk but did not express greater intention to adopt healthier lifestyles. Aspects of health behavior theory other than perceived risk need to be explored to help target efforts in the primary prevention of diabetes

    Performance of A1C for the Classification and Prediction of Diabetes

    Get PDF
    OBJECTIVE Although A1C is now recommended to diagnose diabetes, its test performance for diagnosis and prognosis is uncertain. Our objective was to assess the test performance of A1C against single and repeat glucose measurements for diagnosis of prevalent diabetes and for prediction of incident diabetes. RESEARCH DESIGN AND METHODS We conducted population-based analyses of 12,485 participants in the Atherosclerosis Risk in Communities (ARIC) study and a subpopulation of 691 participants in the Third National Health and Nutrition Examination Survey (NHANES III) with repeat test results. RESULTS Against a single fasting glucose ≥126 mg/dl, the sensitivity and specificity of A1C ≥6.5% for detection of prevalent diabetes were 47 and 98%, respectively (area under the curve 0.892). Against repeated fasting glucose (3 years apart) ≥126 mg/dl, sensitivity improved to 67% and specificity remained high (97%) (AUC 0.936). Similar results were obtained in NHANES III against repeated fasting glucose 2 weeks apart. The accuracy of A1C was consistent across age, BMI, and race groups. For individuals with fasting glucose ≥126 mg/dl and A1C ≥6.5% at baseline, the 10-year risk of diagnosed diabetes was 88% compared with 55% among those individuals with fasting glucose ≥126 mg/dl and A1C 5.7–<6.5%. CONCLUSIONS A1C performs well as a diagnostic tool when diabetes definitions that most closely resemble those used in clinical practice are used as the “gold standard.” The high risk of diabetes among individuals with both elevated fasting glucose and A1C suggests a dual role for fasting glucose and A1C for prediction of diabetes. Although A1C is now recommended for the diagnosis of diabetes (1,2), its precise test performance is uncertain. The lack of a single, clear “gold standard” poses a challenge for determining the performance of A1C. Previous diagnostic studies of A1C have relied exclusively on a single elevated fasting or 2-h glucose values as gold standards (3–5). However, because glucose determinations are inherently more variable than A1C (6), these convenient gold standards are likely to reduce the apparent accuracy of A1C as a diagnostic test. A stronger gold standard would rely on repeated glucose determinations on different days (2), i.e., the recommended approach to diagnosis of diabetes in clinical practice. Alternatively, A1C and fasting glucose can be compared head-to-head against the subsequent development of clinically diagnosed diabetes as the gold standard. We hypothesized that 1) A1C would perform well as a diagnostic and prognostic test for diabetes across its full range and at the American Diabetes Association–recommended threshold of 6.5% and 2) that its performance would be best when judged against stronger, most clinically relevant gold standards
    corecore