4,342 research outputs found

    The Minimum Total Mass of MACHOs and Halo Models of the Galaxy

    Get PDF
    If the density distribution \rho (r) of MACHOs is spherically symmetric with respect to the Galactic center, it is shown that the minimal total mass M_{min}^{{ MACHO}} of the MACHOs is 1.7\times 10^{10}\sol \tau_{-6.7}^{{ LMC}} where \tau_{-6.7}^{{ LMC}} is the optical depth (\tau^{{ LMC}}) toward the Large Magellanic Cloud (LMC) in the unit of 2\times 10^{-7}. If \rho (r) is a decreasing function of r, it is proved that M_{min}^{{ MACHO}} is 5.6\times 10^{10}\sol \tau_{-6.7}^{{ LMC}}. Several spherical and axially symmetric halo models of the Galaxy with a few free parameters are also considered. It is found that M_{min}^{{ MACHO}} ranges from 5.6\times 10^{10}\sol \tau_{-6.7}^{{ LMC}} to \sim 3 \times 10^{11}\sol \tau_{-6.7}^{{ LMC}}. For general case, the minimal column density \Sigma_{min}^{{ MACHO}} of MACHOs is obtained as \Sigma_{min}^{{ MACHO}} =25 \sol { pc}^{-2}\tau_{-6.7}^{{ LMC}}. If the clump of MACHOs exist only halfway between LMC and the sun, M_{min}^{{ MACHO}} is 1.5\times 10^9\sol. This shows that the total mass of MACHOs is smaller than 5 \times 10^{10}\sol , i.e. \sim 10\% of the mass of the halo inside LMC, either if the density distribution of MACHOs is unusual or \tau^{{ LMC}}\ll 2\times 10^{-7}.Comment: 5 pages, 5 Encapsulated PostScript figures, Latex, Accepted for publication in Apj. Letter

    The JPL telerobot operator control station. Part 1: Hardware

    Get PDF
    The Operator Control Station of the Jet Propulsion Laboratory (JPL)/NASA Telerobot Demonstrator System provides the man-machine interface between the operator and the system. It provides all the hardware and software for accepting human input for the direct and indirect (supervised) manipulation of the robot arms and tools for task execution. Hardware and software are also provided for the display and feedback of information and control data for the operator's consumption and interaction with the task being executed. The hardware design, system architecture, and its integration and interface with the rest of the Telerobot Demonstrator System are discussed

    Strain and field modulation in bilayer graphene band structure

    Full text link
    Using an external electric field, one can modulate the bandgap of Bernal stacked bilayer graphene by breaking A-~B symmetry. We analyze strain effects on the bilayer graphene using the extended Huckel theory and find that reduced interlayer distance results in higher bandgap modulation, as expected. Furthermore, above about 2.5 angstrom interlayer distance, the bandgap is direct, follows a convex relation to electric field and saturates to a value determined by the interlayer distance. However, below about 2.5 angstrom, the bandgap is indirect, the trend becomes concave and a threshold electric field is observed, which also depends on the stacking distance.Comment: 3 pages, 5 figures - v1 and v2 are the same, uploaded twice - v3, some typos fixed and a reference adde

    Microstructure and mechanical properties of a high Nb-TiAl alloy fabricated by electron beam melting

    Get PDF
    Electron beam melting (EBM) has been applied to fabricate a high Nb-TiAl alloy with a fully dense microstructure and good tensile properties at both room and high temperatures. The effects of preheating and melting parameters on melting, solidification, phase transformation and resulting microstructure formation in as-EBM high Nb-TiAl alloy were investigated by performing a design-of-experiments. Results show that the limited EBM processing window can be broadened to produce different characteristic microstructures ranging from nearly fully lamellar γ/α2 to equiaxed γ grains. Such a broadened processing window has been achieved by using stronger preheating beam current. A numerical simulation was performed to understand temperature evolution at a fixed point of interest where electron beam passed several times with a certain line offset within one build layer. Both the preheating and melting stages were considered in the model. Modelling results show that a higher preheating beam current resulted in a longer hold time within the temperature range between 1300 and 1380 °C (i.e. single α-phase region). This helped to produce fine lamellar microstructure in the high Nb-TiAl alloy. Fundamental principles are thus proposed in terms of controlling microstructure formation and fabricating fully dense high Nb-TiAl alloy in as-EBM condition

    The thermal equation of state of FeTiO_3 ilmenite based on in situ X-ray diffraction at high pressures and temperatures

    Get PDF
    We present in situ measurements of the unit-cell volume of a natural terrestrial ilmenite (Jagersfontein mine, South Africa) and a synthetic reduced ilmenite (FeTiO_3) at simultaneous high pressure and high temperature up to 16 GPa and 1273 K. Unit-cell volumes were determined using energy-dispersive synchrotron X-ray diffraction in a multi-anvil press. Mössbauer analyses show that the synthetic sample contained insignificant amounts of Fe^(3+) both before and after the experiment. Results were fit to Birch-Murnaghan thermal equations of state, which reproduce the experimental data to within 0.5 and 0.7 GPa for the synthetic and natural samples, respectively. At ambient conditions, the unit-cell volume of the natural sample [V_0 = 314.75 ± 0.23 (1 ) Å^3] is significantly smaller than that of the synthetic sample [V_0 = 319.12 ± 0.26 Å^3]. The difference can be attributed to the presence of impurities and Fe^(3+) in the natural sample. The 1 bar isothermal bulk moduli K_(T0) for the reduced ilmenite is slightly larger than for the natural ilmenite (181 ± 7 and 165 ± 6 GPa, respectively), with pressure derivatives K_0' = 3 ± 1. Our results, combined with literature data, suggest that the unit-cell volume of reduced ilmenite is significantly larger than that of oxidized ilmenite, whereas their thermoelastic parameters are similar. Our data provide more appropriate input parameters for thermo-chemical models of lunar interior evolution, in which reduced ilmenite plays a critical role

    Electronic and Magnetic Properties of Partially-Open Carbon Nanotubes

    Full text link
    On the basis of the spin-polarized density functional theory calculations, we demonstrate that partially-open carbon nanotubes (CNTs) observed in recent experiments have rich electronic and magnetic properties which depend on the degree of the opening. A partially-open armchair CNT is converted from a metal to a semiconductor, and then to a spin-polarized semiconductor by increasing the length of the opening on the wall. Spin-polarized states become increasingly more stable than nonmagnetic states as the length of the opening is further increased. In addition, external electric fields or chemical modifications are usable to control the electronic and magnetic properties of the system. We show that half-metallicity may be achieved and the spin current may be controlled by external electric fields or by asymmetric functionalization of the edges of the opening. Our findings suggest that partially-open CNTs may offer unique opportunities for the future development of nanoscale electronics and spintronics.Comment: 6 figures, to appear in J. Am. Chem. So

    Node re-ordering as a means of anomaly detection in time-evolving graphs

    Full text link
    © Springer International Publishing AG 2016. Anomaly detection is a vital task for maintaining and improving any dynamic system. In this paper, we address the problem of anomaly detection in time-evolving graphs, where graphs are a natural representation for data in many types of applications. A key challenge in this context is how to process large volumes of streaming graphs. We propose a pre-processing step before running any further analysis on the data, where we permute the rows and columns of the adjacency matrix. This pre-processing step expedites graph mining techniques such as anomaly detection, PageRank, or graph coloring. In this paper, we focus on detecting anomalies in a sequence of graphs based on rank correlations of the reordered nodes. The merits of our approach lie in its simplicity and resilience to challenges such as unsupervised input, large volumes and high velocities of data. We evaluate the scalability and accuracy of our method on real graphs, where our method facilitates graph processing while producing more deterministic orderings. We show that the proposed approach is capable of revealing anomalies in a more efficient manner based on node rankings. Furthermore, our method can produce visual representations of graphs that are useful for graph compression

    Simultaneous Continuation of Infinitely Many Sinks Near a Quadratic Homoclinic Tangency

    Full text link
    We prove that the C3C^3 diffeomorphisms on surfaces, exhibiting infinitely many sinksnear the generic unfolding of a quadratic homoclinic tangency of a dissipative saddle, can be perturbed along an infinite dimensional manifold of C3C^3 diffeomorphisms such that infinitely many sinks persist simultaneously. On the other hand, if they are perturbed along one-parameter families that unfold generically the quadratic tangencies, then at most a finite number of those sinks have continuation
    corecore