31,782 research outputs found
Study of Chromium-Frit-Type Coatings for High-Temperature Protection of Molybdenum
The achievement of more compact and efficient power plants for aircraft is dependent, among other factors, on the perfection of heat-resisting materials that are superior to those in current use. Molybdenum is one of the high-melting metals (melting point, 4750 F). It is fairly abundant and also can be worked into many of the shapes required in modern power plants. To permit its widespread use at elevated temperatures, however, some means must first be found to prevent its rapid oxidation. The application of a protective coating is one method that might be used to achieve this goal. In the present work, a number of chromium-frit-type coatings were studied. These were bonded to molybdenum specimens by firing in controlled atmospheres to temperatures in the range of 2400 to 2700 F
Double crystal x-ray diffraction simulations of diffusion in semiconductor microstructures
Diffusion in group IV, III-V and II-VI semiconductors is an interesting problem not only from a fundamental physics viewpoint but also in practical terms, since it could determine the useful lifetime of a device. Any attempt to control the amount of diffusion in a semiconductor device, whether it be a quantum well structure or not, requires an accurate determination of the diffusion coefficient. The present theoretical study shows that this could be achieved via x-ray diffraction studies in quantum well structures. It is demonstrated that the rocking curves of single quantum wells are not sensitive to diffusion. However the intensity of the first order satellite, which is characteristic of superlattice rocking curves, is strongly dependent upon diffusion and it is proposed that this technique could be used to measure the diffusion coefficient D. © 1998 American Institute of Physics
Intersubband carrier scattering in n- and p-Si/SiGe quantum wells with diffuse interfaces
Scattering rate calculations in two-dimensional Si/Si1−xGex systems have typically been restricted to rectangular Ge profiles at interfaces between layers. Real interfaces however, may exhibit diffuse Ge profiles either by design or as a limitation of the growth process. It is shown here that alloy disorder scattering dramatically increases with Ge interdiffusion in (100) and (111) n-type quantum wells, but remains almost constant in (100) p-type heterostructures. It is also shown that smoothing of the confining potential leads to large changes in subband energies and scattering rates and a method is presented for calculating growth process tolerances
Dip coating process: Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project
The research program to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon by dip-coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon is reported. The initial effort concentrated on the design and construction of the experimental dip-coating facility. The design was completed and its experimental features are discussed. Current status of the program is reported, including progress toward solar cell junction diffusion and miscellaneous ceramic substrate procurement
Absence of Hybridization Gap in Heavy Electron Systems and Analysis of YbAl3 in terms of Nearly Free Electron Conduction Band
In the analysis of the heavy electron systems, theoretical models with c-f
hybridization gap are often used. We point out that such a gap does not exist
and the simple picture with the hybridization gap is misleading in the metallic
systems, and present a correct picture by explicitly constructing an effective
band model of YbAl_3. Hamiltonian consists of a nearly free electron model for
conduction bands which hybridize with localized f-electrons, and includes only
a few parameters. Density of states, Sommerfeld coefficient, f-electron number
and optical conductivity are calculated and compared with the band calculations
and the experiments.Comment: 9 pages, 9 figures, submitted to J. Phys. Soc. Jp
Spin-Orbit Coupling and Ion Displacements in Multiferroic TbMnO3
The electronic and magnetic properties of TbMnO3 leading to its ferroelectric
(FE) polarization were investigated on the basis of relativistic density
functional theory (DFT) calculations. In agreement with experiment, we show
that the spin-spiral plane of TbMnO3 can be either the bc- or ab-plane, but not
the ac-plane. As for the mechanism of FE polarization, our work reveals that
the "pure electronic" model by Katsura, Nagaosa and Balatsky (KNB) is
inadequate in predicting the absolute direction of FE polarization. For the
ab-plane spin-spiral state of TbMnO3, the direction of FE polarization
predicted by the KNB model is opposite to that predicted by DFT calculations.
In determining the magnitude and the absolute direction of FE polarization in
spin-spiral states, it is found crucial to consider the displacements of the
ions from their ecntrosymmetric positions
Influence of oxygen vacancy on the electronic structure of HfO film
We investigated the unoccupied part of the electronic structure of the
oxygen-deficient hafnium oxide (HfO) using soft x-ray absorption
spectroscopy at O and Hf edges. Band-tail states beneath the
unoccupied Hf 5 band are observed in the O -edge spectra; combined with
ultraviolet photoemission spectrum, this indicates the non-negligible
occupation of Hf 5 state. However, Hf -edge magnetic circular dichroism
spectrum reveals the absence of a long-range ferromagnetic spin order in the
oxide. Thus the small amount of electron gained by the vacancy formation
does not show inter-site correlation, contrary to a recent report [M.
Venkatesan {\it et al.}, Nature {\bf 430}, 630 (2004)].Comment: 5 pages, 4 figures, submitted to Phys. Rev.
Theory of valley-orbit coupling in a Si/SiGe quantum dot
Electron states are studied for quantum dots in a strained Si quantum well,
taking into account both valley and orbital physics. Realistic geometries are
considered, including circular and elliptical dot shapes, parallel and
perpendicular magnetic fields, and (most importantly for valley coupling) the
small local tilt of the quantum well interface away from the crystallographic
axes. In absence of a tilt, valley splitting occurs only between pairs of
states with the same orbital quantum numbers. However, tilting is ubiquitous in
conventional silicon heterostructures, leading to valley-orbit coupling. In
this context, "valley splitting" is no longer a well defined concept, and the
quantity of merit for qubit applications becomes the ground state gap. For
typical dots used as qubits, a rich energy spectrum emerges, as a function of
magnetic field, tilt angle, and orbital quantum number. Numerical and
analytical solutions are obtained for the ground state gap and for the mixing
fraction between the ground and excited states. This mixing can lead to valley
scattering, decoherence, and leakage for Si spin qubits.Comment: 18 pages, including 4 figure
A simple model for the vibrational modes in honeycomb lattices
The classical lattice dynamics of honeycomb lattices is studied in the
harmonic approximation. Interactions between nearest neighbors are represented
by springs connecting them. A short and necessary introduction of the lattice
structure is presented. The dynamical matrix of the vibrational modes is then
derived, and its eigenvalue problem is solved analytically. The solution may
provide deeper insight into the nature of the vibrational modes. Numerical
results for the vibrational frequencies are presented. To show that how
effective our method used for the case of honeycomb lattice is, we also apply
it to triangular and square lattice structures. A few suggested problems are
listed in the concluding section.Comment: 9 pages, 12 figures, submitted to American Journal of Physic
- …