120 research outputs found
Theory of x-ray absorption by laser-aligned symmetric-top molecules
We devise a theory of x-ray absorption by symmetric-top molecules which are
aligned by an intense optical laser. Initially, the density matrix of the
system is composed of the electronic ground state of the molecules and a
thermal ensemble of rigid-rotor eigenstates. We formulate equations of motion
of the two-color (laser plus x rays) rotational-electronic problem. The
interaction with the laser is assumed to be nonresonant; it is described by an
electric dipole polarizability tensor. X-ray absorption is approximated as a
one-photon process. It is shown that the equations can be separated such that
the interaction with the laser can be treated independently of the x rays. The
laser-only density matrix is propagated numerically. After each time step, the
x-ray absorption is calculated. We apply our theory to study adiabatic
alignment of bromine molecules (Br2). The required dynamic polarizabilities are
determined using the ab initio linear response methods coupled-cluster singles
(CCS), second-order approximate coupled-cluster singles and doubles (CC2), and
coupled-cluster singles and doubles (CCSD). For the description of x-ray
absorption on the sigma_g 1s --> sigma_u 4p resonance, a parameter-free
two-level model is used for the electronic structure of the molecules. Our
theory opens up novel perspectives for the quantum control of x-ray radiation.Comment: 14 pages, 4 figures, 1 table, RevTeX4, revise
Marine Biodiversity in the Caribbean: Regional Estimates and Distribution Patterns
This paper provides an analysis of the distribution patterns of marine biodiversity and summarizes the major activities of the Census of Marine Life program in the Caribbean region. The coastal Caribbean region is a large marine ecosystem (LME) characterized by coral reefs, mangroves, and seagrasses, but including other environments, such as sandy beaches and rocky shores. These tropical ecosystems incorporate a high diversity of associated flora and fauna, and the nations that border the Caribbean collectively encompass a major global marine biodiversity hot spot. We analyze the state of knowledge of marine biodiversity based on the geographic distribution of georeferenced species records and regional taxonomic lists. A total of 12,046 marine species are reported in this paper for the Caribbean region. These include representatives from 31 animal phyla, two plant phyla, one group of Chromista, and three groups of Protoctista. Sampling effort has been greatest in shallow, nearshore waters, where there is relatively good coverage of species records; offshore and deep environments have been less studied. Additionally, we found that the currently accepted classification of marine ecoregions of the Caribbean did not apply for the benthic distributions of five relatively well known taxonomic groups. Coastal species richness tends to concentrate along the Antillean arc (Cuba to the southernmost Antilles) and the northern coast of South America (Venezuela â Colombia), while no pattern can be observed in the deep sea with the available data. Several factors make it impossible to determine the extent to which these distribution patterns accurately reflect the true situation for marine biodiversity in general: (1) highly localized concentrations of collecting effort and a lack of collecting in many areas and ecosystems, (2) high variability among collecting methods, (3) limited taxonomic expertise for many groups, and (4) differing levels of activity in the study of different taxa
Structure from motion photogrammetry in forestry : a review
AbstractPurpose of ReviewThe adoption of Structure from Motion photogrammetry (SfM) is transforming the acquisition of three-dimensional (3D) remote sensing (RS) data in forestry. SfM photogrammetry enables surveys with little cost and technical expertise. We present the theoretical principles and practical considerations of this technology and show opportunities that SfM photogrammetry offers for forest practitioners and researchers.Recent FindingsOur examples of key research indicate the successful application of SfM photogrammetry in forestry, in an operational context and in research, delivering results that are comparable to LiDAR surveys. Reviewed studies have identified possibilities for the extraction of biophysical forest parameters from airborne and terrestrial SfM point clouds and derived 2D data in area-based approaches (ABA) and individual tree approaches. Additionally, increases in the spatial and spectral resolution of sensors available for SfM photogrammetry enable forest health assessment and monitoring. The presented research reveals that coherent 3D data and spectral information, as provided by the SfM workflow, promote opportunities to derive both structural and physiological attributes at the individual tree crown (ITC) as well as stand levels.SummaryWe highlight the potential of using unmanned aerial vehicles (UAVs) and consumer-grade cameras for terrestrial SfM-based surveys in forestry. Offering several spatial products from a single sensor, the SfM workflow enables foresters to collect their own fit-for-purpose RS data. With the broad availability of non-expert SfM software, we provide important practical considerations for the collection of quality input image data to enable successful photogrammetric surveys
- âŠ