1,785 research outputs found

    Decomposition of NO studied by infrared emission and CO laser absorption

    Get PDF
    A diagnostic technique for monitoring the concentration of NO using absorption of CO laser radiation was developed and applied in a study of the decomposition kinetics of NO. Simultaneous measurements of infrared emission by NO at 5.3 microns were also made to validate the laser absorption technique. The data were obtained behind incident shocks in NO-N2O-Ar (or Kr) mixtures, with temperatures in the range 2400-4100 K. Rate constants for dominant reactions were inferred from comparisons with computer simulations of the reactive flow

    An Automatic and Symbolic Parallelization System for Distributed Memory Parallel Computers

    Get PDF
    This paper describes ASPAR (Automatic and Symbolic PARallelization) which consists of a source-to-source parallelizer and a set of interactive graphic tools. While the issues of data dependency have already been explored and used in many parallel computer systems such as vector and shared memory machines, distributed memory parallel computers require, in addition, explicit data decomposition. New symbolic analysis and data-dependency analysis methods are used to determine an explicit data decomposition scheme. Automatic parallelization models using high level communications are also described in this paper. The target applications are of the “regular-mesh" type typical of many scientific calculations. The system has been implemented for the language C, and is designed for easy modification for other languages such as Fortran

    The Spatial Distribution of Atomic Carbon Emission in the Giant Molecular Cloud NGC 604-2

    Full text link
    We have mapped a giant molecular cloud in the giant HII region NGC 604 in M33 in the 492 GHz ^3P_1 -- ^3P_0 transition of neutral atomic carbon using the James Clerk Maxwell Telescope. We find the distribution of the [CI] emission to be asymmetric with respect to the CO J=1--0 emission, with the peak of the [CI] emission offset towards the direction of the center of the HII region. In addition, the line ratio I_{[CI]}/I_{CO} is highest (~ 0.2) facing the HII region and lowest (< 0.1) away from it. These asymmetries indicate an edge-on morphology where the [CI] emission is strongest on the side of the cloud facing the center of the HII region, and not detected at all on the opposite side This suggests that the sources of the incident flux creating C from the dissociation of CO are the massive stars of the HII region. The lowest line ratios are similar to what is observed in Galactic molecular clouds, while the highest are similar to starburst galaxies and other regions of intense star formation. The column density ratio, N(C)/N(H_2) is a few times 10^{-6}, in general agreement with models of photodissociation regions.Comment: Accepted for publication in ApJ. 8 pages, 5 figures, 3 table

    Multifluid, Magnetohydrodynamic Shock Waves with Grain Dynamics II. Dust and the Critical Speed for C Shocks

    Full text link
    This is the second in a series of papers on the effects of dust on multifluid, MHD shock waves in weakly ionized molecular gas. We investigate the influence of dust on the critical shock speed, v_crit, above which C shocks cease to exist. Chernoff showed that v_crit cannot exceed the grain magnetosound speed, v_gms, if dust grains are dynamically well coupled to the magnetic field. We present numerical simulations of steady shocks where the grains may be well- or poorly coupled to the field. We use a time-dependent, multifluid MHD code that models the plasma as a system of interacting fluids: neutral particles, ions, electrons, and various ``dust fluids'' comprised of grains with different sizes and charges. Our simulations include grain inertia and grain charge fluctuations but to highlight the essential physics we assume adiabatic flow, single-size grains, and neglect the effects of chemistry. We show that the existence of a phase speed v_phi does not necessarily mean that C shocks will form for all shock speeds v_s less than v_phi. When the grains are weakly coupled to the field, steady, adiabatic shocks resemble shocks with no dust: the transition to J type flow occurs at v_crit = 2.76 v_nA, where v_nA is the neutral Alfven speed, and steady shocks with v_s > 2.76 v_nA are J shocks with magnetic precursors in the ion-electron fluid. When the grains are strongly coupled to the field, v_crit = min(2.76 v_nA, v_gms). Shocks with v_crit < v_s < v_gms have magnetic precursors in the ion-electron-dust fluid. Shocks with v_s > v_gms have no magnetic precursor in any fluid. We present time-dependent calculations to study the formation of steady multifluid shocks. The dynamics differ qualitatively depending on whether or not the grains and field are well coupled.Comment: 43 pages with 17 figures, aastex, accepted by The Astrophysical Journa

    Complex Langevin Equation and the Many-Fermion Problem

    Get PDF
    We study the utility of a complex Langevin (CL) equation as an alternative for the Monte Carlo (MC) procedure in the evaluation of expectation values occurring in fermionic many-body problems. We find that a CL approach is natural in cases where non-positive definite probability measures occur, and remains accurate even when the corresponding MC calculation develops a severe ``sign problem''. While the convergence of CL averages cannot be guaranteed in principle, we show how convergent results can be obtained in three examples ranging from simple one-dimensional integrals over quantum mechanical models to a schematic shell model path integral.Comment: 19 pages, 10 PS figures embedded in tex

    Simultaneous Embeddability of Two Partitions

    Full text link
    We study the simultaneous embeddability of a pair of partitions of the same underlying set into disjoint blocks. Each element of the set is mapped to a point in the plane and each block of either of the two partitions is mapped to a region that contains exactly those points that belong to the elements in the block and that is bounded by a simple closed curve. We establish three main classes of simultaneous embeddability (weak, strong, and full embeddability) that differ by increasingly strict well-formedness conditions on how different block regions are allowed to intersect. We show that these simultaneous embeddability classes are closely related to different planarity concepts of hypergraphs. For each embeddability class we give a full characterization. We show that (i) every pair of partitions has a weak simultaneous embedding, (ii) it is NP-complete to decide the existence of a strong simultaneous embedding, and (iii) the existence of a full simultaneous embedding can be tested in linear time.Comment: 17 pages, 7 figures, extended version of a paper to appear at GD 201

    Star formation in disk galaxies driven by primordial H_2

    Full text link
    We show that gaseous \HI disks of primordial composition irradiated by an external radiation field can develop a multiphase medium with temperatures between 10^2 and 10^4 K due to the formation of molecular hydrogen. For a given \HI column density there is a critical value of the radiation field below which only the cold \HI phase can exist. Due to a time decreasing quasar background, the gas starts cooling slowly after recombination until the lowest stable temperature in the warm phase is reached at a critical redshift z=zcrz=z_{cr}. Below this redshift the formation of molecular hydrogen promotes a rapid transition towards the cold \HI phase. We find that disks of protogalaxies with 10^{20}\simlt N_{HI}\simlt 10^{21} cm^{-2} are gravitationally stable at T∼104T\sim 10^4 K and can start their star formation history only at z \simlt z_{cr}\sim 2, after the gas in the central portion of the disk has cooled to temperatures T\simlt 300 K. Such a delayed starbust phase in galaxies of low gas surface density and low dynamical mass can disrupt the disks and cause them to fade away. These objects could contribute significantly to the faint blue galaxy population.Comment: 16 pages (LaTeX), 2 Figures to be published in Astrophysical Journal Letter

    Parametrization of C-shocks. Evolution of the Sputtering of Grains

    Full text link
    Context: The detection of narrow SiO lines toward the young shocks of the L1448-mm outflow has been interpreted as a signature of the magnetic precursor of C-shocks. In contrast with the low SiO abundances (<10E-12) in the ambient gas, the narrow SiO emission at almost ambient velocities reveals enhanced SiO abundances of 10E-11. This enhancement has been proposed to be produced by the sputtering of the grain mantles at the first stages of C-shocks. However, modelling of the sputtering of grains has usually averaged the SiO abundances over the dissipation region of C-shocks, which cannot explain the recent observations. Aims: To model the evolution of the gas phase abundances of SiO, CH3OH and H2O, produced by the sputtering of grains as the shock propagates through the ambient gas. Methods: We propose a parametric model to describe the physical structure of C-shocks as a function of time. Using the known sputtering yields for water mantles (with minor constituents like silicon and CH3OH) and olivine cores by collisions with H2, He, C, O, Si, Fe and CO, we follow the evolution of the abundances of silicon, CH3OH and H2O ejected from grains. Results: The evolution of these abundances shows that CO seems to be the most efficient sputtering agent in low velocity shocks. The velocity threshold for the sputtering of silicon from the grain mantles is reduced by 5-10 km s-1 by CO compared to other models. The sputtering by CO can generate SiO abundances of 10E-11 at the early stages of low velocity shocks, consistent with those observed in the magnetic precursor of L1448-mm. Our model also satisfactorily reproduce the progressive enhancement of SiO, CH3OH and H2O observed in this outflow by the coexistence of two shocks with vs=30 and 60kms-1 within the same region.Comment: 12 pages, 7 figures, accepted for publication in A&

    An Analysis of the Shapes of Interstellar Extinction Curves. V. The IR-Through-UV Curve Morphology

    Full text link
    We study the IR-through-UV interstellar extinction curves towards 328 Galactic B and late-O stars. We use a new technique which employs stellar atmosphere models in lieu of unreddened "standard" stars. This technique is capable of virtually eliminating spectral mismatch errors in the curves. It also allows a quantitative assessment of the errors and enables a rigorous testing of the significance of relationships between various curve parameters, regardless of whether their uncertainties are correlated. Analysis of the curves gives the following results: (1) In accord with our previous findings, the central position of the 2175 A extinction bump is mildly variable, its width is highly variable, and the two variations are unrelated. (2) Strong correlations are found among some extinction properties within the UV region, and within the IR region. (3) With the exception of a few curves with extreme (i.e., large) values of R(V), the UV and IR portions of Galactic extinction curves are not correlated with each other. (4) The large sightline-to-sightline variation seen in our sample implies that any average Galactic extinction curve will always reflect the biases of its parent sample. (5) The use of an average curve to deredden a spectral energy distribution (SED) will result in significant errors, and a realistic error budget for the dereddened SED must include the observed variance of Galactic curves. While the observed large sightline-to-sightline variations, and the lack of correlation among the various features of the curves, make it difficult to meaningfully characterize average extinction properties, they demonstrate that extinction curves respond sensitively to local conditions. Thus, each curve contains potentially unique information about the grains along its sightline.Comment: To appear in the Astrophysical Journal, Part 1, July 1, 2007. Figures and Tables which will appear only in the electronic version of the Journal can be obtained via anonymous ftp from ftp://ftp.astronomy.villanova.edu . After logging in, change directories to "fitz/FMV_EXTINCTION". A README file describes the various files present in the director

    MOST Detects g-Modes in the Late-Type be Star beta CMi (B8Ve)

    Full text link
    The Microvariability and Oscillations of stars (MOST) satellite has detected low-amplitude light variations (Δm∼\Delta m\sim1 mmag) in the Be star β\beta CMi (B8Ve). The observations lasted 41 days and the variations have typical periods ∼0.3\sim 0.3 days. We demonstrate that the dominant frequencies are consistent with prograde high-order g-modes of m=−1m=-1 excited by the Fe-bump of opacity in an intermediate-mass (≈3.5M⊙\approx 3.5 M_\odot) star with a nearly critical rotation period of 0.38 days. This is the first detection of nonradial g-mode pulsations in a Be star later than B6 leading to the possibility that pulsations are excited in all classical Be stars.Comment: 17 pages, 6 figures; Astrophysical Journal part 1 in pres
    • …
    corecore