1,681 research outputs found

    Shipboard Techniques for Oceanographic Observations

    Get PDF
    This report gives the details of water sampling methods and chemical analyses used during MLML participation in the EOS MODIS investigations. It is intended to be used as a reference manual for those engaged in shipboard work. (PDF contains 50 pages

    The biomechanical function of periodontal ligament fibres in orthodontic tooth movement

    Get PDF
    Orthodontic tooth movement occurs as a result of resorption and formation of the alveolar bone due to an applied load, but the stimulus responsible for triggering orthodontic tooth movement remains the subject of debate. It has been suggested that the periodontal ligament (PDL) plays a key role. However, the mechanical function of the PDL in orthodontic tooth movement is not well understood as most mechanical models of the PDL to date have ignored the fibrous structure of the PDL. In this study we use finite element (FE) analysis to investigate the strains in the alveolar bone due to occlusal and orthodontic loads when PDL is modelled as a fibrous structure as compared to modelling PDL as a layer of solid material. The results show that the tension-only nature of the fibres essentially suspends the tooth in the tooth socket and their inclusion in FE models makes a significant difference to both the magnitude and distribution of strains produced in the surrounding bone. The results indicate that the PDL fibres have a very important role in load transfer between the teeth and alveolar bone and should be considered in FE studies investigating the biomechanics of orthodontic tooth movement. © 2014 McCormack et al

    Masticatory biomechanics in the rabbit : a multi-body dynamics analysis

    Get PDF
    Acknowledgement We thank Sue Taft (University of Hull) for the µCT-scanning of the rabbit specimen used in this study. We also thank Raphaël Cornette, Jacques Bonnin, Laurent Dufresne, and l'Amicale des Chasseurs Trappistes (ACT) for providing permission and helping us capture the rabbits used for the in vivo bite force measurements at la Réserve Naturelle Nationale de St Quentin en Yvelines, France.Peer reviewedPublisher PD

    Design definition study of a NASA/Navy lift/cruise fan technology V/STOL airplane: Risk assessment addendum to the final report

    Get PDF
    An assessment of risk, in terms of delivery delays, cost overrun, and performance achievement, associated with the V/STOL technology airplane is presented. The risk is discussed in terms of weight, structure, aerodynamics, propulsion, mechanical drive, and flight controls. The analysis ensures that risks associated with the design and development of the airplane will be eliminated in the course of the program and a useful technology airplane that meets the predicted cost, schedule, and performance can be produced

    Inclusion of periodontal ligament fibres in mandibular finite element models leads to an increase in alveolar bone strains

    Get PDF
    Alveolar bone remodelling is vital for the success of dental implants and orthodontic treatments. However, the underlying biomechanical mechanisms, in particular the function of the periodontal ligament (PDL) in bone loading and remodelling, are not well understood. The PDL is a soft fibrous connective tissue that joins the tooth root to the alveolar bone and plays a critical role in the transmission of loads from the tooth to the surrounding bone. However, due to its complex structure, small size and location within the tooth socket it is difficult to study in vivo. Finite element analysis (FEA) is an ideal tool with which to investigate the role of the PDL, however inclusion of the PDL in FE models is complex and time consuming, therefore consideration must be given to how it is included. The aim of this study was to investigate the effects of including the PDL and its fibrous structure in mandibular finite element models. A high-resolution model of a human molar region was created from micro-computed tomography scans. This is the first time that the fibrous structure of the PDL has been included in a model with realistic tooth and bone geometry. The results show that omission of the PDL creates a more rigid model, reducing the strains observed in the mandibular corpus which are of interest when considering mandibular functional morphology. How the PDL is modelled also affects the strains. The inclusion of PDL fibres alters the strains in the mandibular bone, increasing the strains in the tooth socket compared to PDL modelled without fibres. As strains in the alveolar bone are thought to play a key role in bone remodelling during orthodontic tooth movement, future FE analyses aimed at improving our understanding and management of orthodontic treatment should include the fibrous structure of the PDL

    Daily MOBY Data Processing

    Get PDF
    (PDF contains 57 pages
    corecore