4,986 research outputs found
Self-Interacting Electromagnetic Fields and a Classical Discussion on the Stability of the Electric Charge
The present work proposes a discussion on the self-energy of charged
particles in the framework of nonlinear electrodynamics. We seek magnet- ically
stable solutions generated by purely electric charges whose electric and
magnetic fields are computed as solutions to the Born-Infeld equa- tions. The
approach yields rich internal structures that can be described in terms of the
physical fields with explicit analytic solutions. This suggests that the
anomalous field probably originates from a magnetic excitation in the vacuum
due to the presence of the very intense electric field. In addition, the
magnetic contribution has been found to exert a negative pressure on the
charge. This, in turn, balances the electric repulsion, in such a way that the
self-interaction of the field appears as a simple and natural classical
mechanism that is able to account for the stability of the electron charge.Comment: 8 pages, 1 figur
Singularity-Free Electrodynamics for Point Charges and Dipoles: Classical Model for Electron Self-Energy and Spin
It is shown how point charges and point dipoles with finite self-energies can
be accomodated into classical electrodynamics. The key idea is the introduction
of constitutive relations for the electromagnetic vacuum, which actually
mirrors the physical reality of vacuum polarization. Our results reduce to
conventional electrodynamics for scales large compared to the classical
electron radius cm. A classical simulation for a
structureless electron is proposed, with the appropriate values of mass, spin
and magnetic moment.Comment: 3 page
(Never) Mind your p's and q's: Von Neumann versus Jordan on the Foundations of Quantum Theory
In two papers entitled "On a new foundation [Neue Begr\"undung] of quantum
mechanics," Pascual Jordan (1927b,g) presented his version of what came to be
known as the Dirac-Jordan statistical transformation theory. As an alternative
that avoids the mathematical difficulties facing the approach of Jordan and
Paul A. M. Dirac (1927), John von Neumann (1927a) developed the modern Hilbert
space formalism of quantum mechanics. In this paper, we focus on Jordan and von
Neumann. Central to the formalisms of both are expressions for conditional
probabilities of finding some value for one quantity given the value of
another. Beyond that Jordan and von Neumann had very different views about the
appropriate formulation of problems in quantum mechanics. For Jordan, unable to
let go of the analogy to classical mechanics, the solution of such problems
required the identication of sets of canonically conjugate variables, i.e., p's
and q's. For von Neumann, not constrained by the analogy to classical
mechanics, it required only the identication of a maximal set of commuting
operators with simultaneous eigenstates. He had no need for p's and q's. Jordan
and von Neumann also stated the characteristic new rules for probabilities in
quantum mechanics somewhat differently. Jordan (1927b) was the first to state
those rules in full generality. Von Neumann (1927a) rephrased them and, in a
subsequent paper (von Neumann, 1927b), sought to derive them from more basic
considerations. In this paper we reconstruct the central arguments of these
1927 papers by Jordan and von Neumann and of a paper on Jordan's approach by
Hilbert, von Neumann, and Nordheim (1928). We highlight those elements in these
papers that bring out the gradual loosening of the ties between the new quantum
formalism and classical mechanics.Comment: New version. The main difference with the old version is that the
introduction has been rewritten. Sec. 1 (pp. 2-12) in the old version has
been replaced by Secs. 1.1-1.4 (pp. 2-31) in the new version. The paper has
been accepted for publication in European Physical Journal
Nonperturbative calculation of Born-Infeld effects on the Schroedinger spectrum of the hydrogen atom
We present the first nonperturbative numerical calculations of the
nonrelativistic hydrogen spectrum as predicted by first-quantized
electrodynamics with nonlinear Maxwell-Born-Infeld field equations. We also
show rigorous upper and lower bounds on the ground state.
When judged against empirical data our results significantly restrict the
range of viable values of the new electromagnetic constant which is introduced
by the Born-Infeld theory.
We assess Born's own proposal for the value of his constant.Comment: 4p., 2 figs, 1 table; submitted for publicatio
Organizational Form and Insurance Company Performance: Stocks versus Mutuals
One unusual feature of the U.S. property-casualty insurance industry is the coexistence of stock and mutual companies. This paper explores the performance of these forms in the industry through a dynamic assessment of how mutual and stock insurance companies respond to differences in their underwriting environment. Agency theories suggest that the stock company may be more 'opportunistic' and less obligated to their insureds than mutuals. This article assesses the responses by stock and mutual firms to changes in the underwriting environment from 1984 to 1991, using measures of individual firms' performance, by state and by line, in eight different lines of insurance. Stock companies are more likely than mutuals to reduce their business in unprofitable situations, and have higher losses than mutuals for a given amount of premiums.
New Perspective on the Optical Theorem of Classical Electrodynamics
A general proof of the optical theorem (also known as the optical
cross-section theorem) is presented that reveals the intimate connection
between the forward scattering amplitude and the absorption-plus-scattering of
the incident wave within the scatterer. The oscillating electric charges and
currents as well as the electric and magnetic dipoles of the scatterer, driven
by an incident plane-wave, extract energy from the incident beam at a certain
rate. The same oscillators radiate electro-magnetic energy into the far field,
thus giving rise to well-defined scattering amplitudes along various
directions. The essence of the proof presented here is that the extinction
cross-section of an object can be related to its forward scattering amplitude
using the induced oscillations within the object but without an actual
knowledge of the mathematical form assumed by these oscillations.Comment: 7 pages, 1 figure, 12 reference
Comparison of imaging with sub-wavelength resolution in the canalization and resonant tunnelling regimes
We compare the properties of subwavelength imaging in the visible wavelength
range for metal-dielectric multilayers operating in the canalization and the
resonant tunnelling regimes. The analysis is based on the transfer matrix
method and time domain simulations. We show that Point Spread Functions for the
first two resonances in the canalization regime are approximately Gaussian in
shape. Material losses suppress transmission for higher resonances, regularise
the PSF but do not compromise the resolution. In the resonant tunnelling
regime, the MTF may dramatically vary in their phase dependence. Resulting PSF
may have a sub-wavelength thickness as well as may be broad with multiple
maxima and a rapid phase modulation. We show that the width of PSF may be
reduced by further propagation in free space, and we provide arguments to
explain this surprising observation.Comment: 17 pages,12 figure
Imaging the Near Field
In an earlier paper we introduced the concept of the perfect lens which
focuses both near and far electromagnetic fields, hence attaining perfect
resolution. Here we consider refinements of the original prescription designed
to overcome the limitations of imperfect materials. In particular we show that
a multi-layer stack of positive and negative refractive media is less sensitive
to imperfections. It has the novel property of behaving like a fibre-optic
bundle but one that acts on the near field, not just the radiative component.
The effects of retardation are included and minimized by making the slabs
thinner. Absorption then dominates image resolution in the near-field. The
deleterious effects of absorption in the metal are reduced for thinner layers.Comment: RevTeX, (9 pages, 8 figures
Barrier Paradox in the Klein Zone
We study the solutions for a one-dimensional electrostatic potential in the
Dirac equation when the incoming wave packet exhibits the Klein paradox (pair
production). With a barrier potential we demonstrate the existence of multiple
reflections (and transmissions). The antiparticle solutions which are
necessarily localized within the barrier region create new pairs with each
reflection at the potential walls. Consequently we encounter a new paradox for
the barrier because successive outgoing wave amplitudes grow geometrically.Comment: 10 page
Mesoscopic one-way channels for quantum state transfer via the Quantum Hall Effect
We show that the one-way channel formalism of quantum optics has a physical
realisation in electronic systems. In particular, we show that magnetic edge
states form unidirectional quantum channels capable of coherently transporting
electronic quantum information. Using the equivalence between one-way photonic
channels and magnetic edge states, we adapt a proposal for quantum state
transfer to mesoscopic systems using edge states as a quantum channel, and show
that it is feasible with reasonable experimental parameters. We discuss how
this protocol may be used to transfer information encoded in number, charge or
spin states of quantum dots, so it may prove useful for transferring quantum
information between parts of a solid-state quantum computer.Comment: 4 pages, 3 figure
- …