3,150 research outputs found

    New features of ion acoustic waves in inhomogeneous and permeating plasmas

    Full text link
    It is generally accepted that the ion acoustic (IA) wave in plasmas containing ions and electrons with the same temperature is of minor importance due to strong damping of the wave by hot resonant ions. In this work it will be shown that the IA wave is susceptible to excitation even in plasmas with hot ions when both an electromagnetic transverse wave and a background density gradient are present in the plasma, and in addition the wave is in fact unstable (i.e., growing) in the case of permeating homogeneous plasmas. The multi-component fluid theory is used to describe the IA wave susceptibility for excitation in inhomogeneous plasmas and its coupling with electromagnetic waves. The growing IA wave in permeating homogeneous plasmas is described by the kinetic theory. In plasmas with density and temperature gradients the IA wave is effectively coupled with the electromagnetic waves. In comparison to ordinary IA wave in homogeneous plasma, the Landau damping of the present wave is much smaller, and to demonstrate this effect a simple but accurate fluid model is presented for the Landau damping. In the case of permeating plasmas, a kinetic mechanism for the current-less IA wave instability is presented, with a very low threshold for excitation as compared with ordinary electron-current-driven kinetic instability. Such growing IA waves can effectively heat plasma in the upper solar atmosphere by a stochastic heating mechanism presented in the work. The results of this work suggest that the IA wave role in the heating of the solar atmosphere (chromosphere and corona) should be reexamined

    Response to Comment of Shukla and Akbari-Moghanjoughi

    Full text link
    Shukla and Akbari-Moghanjoughi have {\it corrected} their Comment (see their version 1 on `arXiv:1207.7029v1) to EPL on our work [1] after receiving our Response from the Editors of EPL. We have a pleasant duty at hand to present our second Response to their second version of the Comment. It is hoped that this response adds strength to our plea {\it for a common sense} [1] on quantum description of plasmas.Comment: Submitted to EP

    Current-less solar wind driven dust acoustic instability in cometary plasma

    Full text link
    A quantitative analysis is presented of the dust acoustic wave instability driven by the solar and stellar winds. This is a current-less kinetic instability which develops in permeating plasmas, i.e.., when one quasi-neutral electron-ion wind plasma in its propagation penetrates through another quasi-neutral plasma which contains dust, electrons and ions

    Drift waves in the corona: heating and acceleration of ions at frequencies far below the gyro frequency

    Get PDF
    In the solar corona, several mechanisms of the drift wave instability can make the mode growing up to amplitudes at which particle acceleration and stochastic heating by the drift wave take place. The stochastic heating, well known from laboratory plasma physics where it has been confirmed in numerous experiments, has been completely ignored in past studies of coronal heating. However, in the present study and in our very recent works it has been shown that the inhomogeneous coronal plasma is, in fact, a perfect environment for fast growing drift waves. As a matter of fact, the large growth rates are typically of the same order as the plasma frequency. The consequent heating rates may exceed the required values for a sustained coronal heating by several orders of magnitude. Some aspects of these phenomena are investigated here. In particular the analysis of the particle dynamics within the growing wave is compared with the corresponding fluid analysis. While both of them predict the stochastic heating, the threshold for the heating obtained from the single particle analysis is higher. The explanation for this effect is given.Comment: To appear in MNRAS (2010

    Features of ion acoustic waves in collisional plasmas

    Get PDF
    The effects of friction on the ion acoustic (IA) wave in fully and partially ionized plasmas are studied. In a quasi-neutral electron-ion plasma the friction between the two species cancels out exactly and the wave propagates without any damping. If the Poisson equation is used instead of the quasi-neutrality, however, the IA wave is damped and the damping is dispersive. In a partially ionized plasma, the collisions with the neutrals modify the IA wave beyond recognition. For a low density of neutrals the mode is damped. Upon increasing the neutral density, the mode becomes first evanescent and then reappears for a still larger number of neutrals. A similar behavior is obtained by varying the mode wave-length. The explanation for this behavior is given. In an inhomogeneous plasma placed in an external magnetic field, and for magnetized electrons and un-magnetized ions, the IA mode propagates in any direction and in this case the collisions make it growing on the account of the energy stored in the density gradient. The growth rate is angle dependent. A comparison with the collision-less kinetic density gradient driven IA instability is also given.Comment: The following article has been accepted by Physics of Plasmas. After it is published, it will be found at http://pop.aip.org

    Solar nanoflares and other smaller energy release events as growing drift waves

    Full text link
    Rapid energy releases (RERs) in the solar corona extend over many orders of magnitude, the largest (flares) releasing an energy of 102510^{25} J or more. Other events, with a typical energy that is a billion times less, are called nanoflares. A basic difference between flares and nanoflares is that flares need a larger magnetic field and thus occur only in active regions, while nanoflares can appear everywhere. The origin of such RERs is usually attributed to magnetic reconnection that takes place at altitudes just above the transition region. Here we show that nanoflares and smaller similar RERs can be explained within the drift wave theory as a natural stage in the kinetic growth of the drift wave. In this scenario, a growing mode with a sufficiently large amplitude leads to stochastic heating that can provide an energy release of over 101610^{16} J
    • …
    corecore