186 research outputs found

    Optical Detection of Preneoplastic Lesions of the Central Airways

    Get PDF
    Current routine diagnosis of premalignant lesions of the central airways is hampered due to a limited sensitivity (white light bronchoscopy) and resolution (computer tomography (CT), positron emission tomography (PET)) of currently used techniques. To improve the detection of these subtle mucosal abnormalities, novel optical imaging bronchoscopic techniques have been developed over the past decade. In this review we highlight the technological developments in the field of endoscopic imaging, and describe their advantages and disadvantages in clinical use

    Electronically Asynchronous Transition States for C-N Bond Formation by Electrophilic [Co-<sup>III</sup>(TAML)]-Nitrene Radical Complexes Involving Substrate-to-Ligand Single-Electron Transfer and a Cobalt-Centered Spin Shuttle

    Get PDF
    [Image: see text] The oxidation state of the redox noninnocent tetra-amido macrocyclic ligand (TAML) scaffold was recently shown to affect the formation of nitrene radical species on cobalt(III) upon reaction with PhI=NNs [ N. P. van Leest; J. Am. Chem. Soc.2020, 142, 552−56331846578]. For the neutral [Co(III)(TAML(sq))] complex, this leads to the doublet (S = 1/2) mono-nitrene radical species [Co(III)(TAML(q))(N(•)Ns)(Y)] (bearing an unidentified sixth ligand Y in at least the frozen state), while a triplet (S = 1) bis-nitrene radical species [Co(III)(TAML(q))(N(•)Ns)(2)](–) is generated from the anionic [Co(III)(TAML(red))](–) complex. The one-electron-reduced Fischer-type nitrene radicals (N(•)Ns(–)) are formed through single (mono-nitrene) or double (bis-nitrene) ligand-to-substrate single-electron transfer (SET). In this work, we describe the reactivity and mechanisms of these nitrene radical complexes in catalytic aziridination. We report that [Co(III)(TAML(sq))] and [Co(III)(TAML(red))](–) are both effective catalysts for chemoselective (C=C versus C–H bonds) and diastereoselective aziridination of styrene derivatives, cyclohexane, and 1-hexene under mild and even aerobic (for [Co(III)(TAML(red))](–)) conditions. Experimental (Hammett plots; [Co(III)(TAML)]-nitrene radical formation and quantification under catalytic conditions; single-turnover experiments; and tests regarding catalyst decomposition, radical inhibition, and radical trapping) in combination with computational (density functional theory (DFT), N-electron valence state perturbation theory corrected complete active space self-consistent field (NEVPT2-CASSCF)) studies reveal that [Co(III)(TAML(q))(N(•)Ns)(Y)], [Co(III)(TAML(q))(N(•)Ns)(2)](–), and [Co(III)(TAML(sq))(N(•)Ns)](–) are key electrophilic intermediates in aziridination reactions. Surprisingly, the electrophilic one-electron-reduced Fischer-type nitrene radicals do not react as would be expected for nitrene radicals (i.e., via radical addition and radical rebound). Instead, nitrene transfer proceeds through unusual electronically asynchronous transition states, in which the (partial) styrene substrate to TAML ligand (single-) electron transfer precedes C–N coupling. The actual C–N bond formation processes are best described as involving a nucleophilic attack of the nitrene (radical) lone pair at the thus (partially) formed styrene radical cation. These processes are coupled to TAML-to-cobalt and cobalt-to-nitrene single-electron transfer, effectively leading to the formation of an amido-γ-benzyl radical (NsN(–)–CH(2)–(•)CH–Ph) bound to an intermediate spin (S = 1) cobalt(III) center. Hence, the TAML moiety can be regarded to act as a transient electron acceptor, the cobalt center behaves as a spin shuttle, and the nitrene radical acts as a nucleophile. Such a mechanism was hitherto unknown for cobalt-catalyzed hypovalent group transfer and the more general transition-metal-catalyzed nitrene transfer to alkenes but is now shown to complement the known concerted and stepwise mechanisms for N-group transfer

    Transcriptional regulation of the cpr gene cluster in ortho-chlorophenol-respiring Desulfitobacterium dehalogenans

    Get PDF
    To characterize the expression and possible regulation of reductive dehalogenation in halorespiring bacteria, a 11.5-kb genomic fragment containing the o-chlorophenol reductive dehalogenase-encoding cprBA genes of the gram-positive bacterium Desulfitobacterium dehalogenans was subjected to detailed molecular characterization. Sequence analysis revealed the presence of eight designated genes with the order cprTKZEBACD and with the same polarity except for cprT. The deduced cprC and cprK gene products belong to the NirI/NosR and CRP-FNR families of transcription regulatory proteins, respectively. CprD and CprE are predicted to be molecular chaperones of the GroEL type, whereas cprT may encode a homologue of the trigger factor folding catalysts. Northern blot analysis, reverse transcriptase PCR, and primer extension analysis were used to elucidate the transcriptional organization and regulation of the cpr gene cluster. Results indicated halorespiration-specific transcriptional induction of the monocistronic cprT gene and the biscistronic cprBA and cprZE genes. Occasional read-through at cprC gives rise to a tetracistronic cprBACD transcript. Transcription of cprBA was induced 15-fold upon addition of the o-chlorophenolic substrate 3-chloro-4-hydroxyphenylacetic acid within 30 min with concomitant induction of dehalogenation activity. Putative regulatory protein binding motifs that to some extent resemble the FNR box were identified in the cprT-cprK and cprK-cprZ intergenic regions and the promoter at cprB, suggesting a role for FNR-like CprK in the control of expression of the cprTKZEBACD genes

    The impact of loco-regional recurrences on metastatic progression in early-stage breast cancer: a multistate model

    Get PDF
    To study whether the effects of prognostic factors associated with the occurrence of distant metastases (DM) at primary diagnosis change after the incidence of loco-regional recurrences (LRR) among women treated for invasive stage I or II breast cancer. The study population consisted of 3,601 women, enrolled in EORTC trials 10801, 10854, or 10902 treated for early-stage breast cancer. Data were analysed in a multivariate, multistate model by using multivariate Cox regression models, including a state-dependent covariate. The presence of a LRR in itself is a significant prognostic risk factor (HR: 3.64; 95%-CI: 2.02-6.5) for the occurrence of DM. Main prognostic risk factors for a DM are young age at diagnosis (</=40: HR: 1.79; 95%-CI: 1.28-2.51), larger tumour size (HR: 1.58; 95%-CI: 1.35-1.84) and node positivity (HR: 2.00; 95%-CI: 1.74-2.30). Adjuvant chemotherapy is protective for a DM (HR: 0.66; 95%-CI: 0.55-0.80). After the occurrence of a LRR the latter protective effect has disappeared (P = 0.009). The presence of LRR in itself is a significant risk factor for DM. For patients who are at risk of developing LRR, effective local control should be the main target of therapy

    Greater Expectations?

    Get PDF
    Physically Unclonable Functions (PUFs) are key tools in the construction of lightweight authentication and key exchange protocols. So far, all existing PUF-based authentication protocols follow the same paradigm: A resource-constrained prover, holding a PUF, wants to authenticate to a resource-rich verifier, who has access to a database of pre-measured PUF challenge-response pairs (CRPs). In this paper we consider application scenarios where all previous PUF-based authentication schemes fail to work: The verifier is resource-constrained (and holds a PUF), while the prover is resource-rich (and holds a CRP-database). We construct the first and efficient PUF-based authentication protocol for this setting, which we call converse PUF-based authentication. We provide an extensive security analysis against passive adversaries, show that a minor modification also allows for authenticated key exchange and propose a concrete instantiation using controlled Arbiter PUFs

    Erratum to: Circulating tumor DNA as a biomarker for monitoring early treatment responses of patients with advanced lung adenocarcinoma receiving immune checkpoint inhibitors.

    Get PDF
    The following error appeared in Section 3.5 in Ref. [1]. Instead of ‘Progressive disease-L1 expression data were available for 87 patients’, the text should read ‘PD-L1 expression data were available for 87 patients’. We apologize for this error.</p

    Gene expression-based classification of non-small cell lung carcinomas and survival prediction

    Get PDF
    Background: Current clinical therapy of non-small cell lung cancer depends on histo-pathological classification. This approach poorly predicts clinical outcome for individual patients. Gene expression profiling holds promise to improve clinical stratification, thus paving the way for individualized therapy. Methodology and Principal Findings:A genome-wide gene expression analysis was performed on a cohort of 91 patients. We used 91 tumor- and 65 adjacent normal lung tissue samples. We defined sets of predictor genes (probe sets) with the expression profiles. The power of predictor genes was evaluated using an independent cohort of 96 non-small cell lung cancer- and 6 normal lung samples. We identified a tumor signature of 5 genes that aggregates the 156 tumor and normal samples into the expected groups. We also identified a histology signature of 75 genes, which classifies the samples in the major histological subtypes of non-small cell lung cancer. Correlation analysis identified 17 genes which showed the best association with post-surgery survival time. This signature was used for stratification of all patients in two risk groups. Kaplan-Meier survival curves show that the two groups display a significant difference in post-surgery survival time (p = 5.6E-6). The performance of the signatures was validated using a patient cohort of similar size (Duke University, n = 96). Compared to previously published prognostic signatures for NSCLC, the 17 gene signature performed well on these two cohorts. Conclusions:The gene signatures identified are promising tools for histo-pathological classification of non-small cell lung cancer, and may improve the prediction of clinical outcome
    • …
    corecore