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Abstract

Background: Current clinical therapy of non-small cell lung cancer depends on histo-pathological classification. This
approach poorly predicts clinical outcome for individual patients. Gene expression profiling holds promise to improve
clinical stratification, thus paving the way for individualized therapy.

Methodology and Principal Findings: A genome-wide gene expression analysis was performed on a cohort of 91 patients.
We used 91 tumor- and 65 adjacent normal lung tissue samples. We defined sets of predictor genes (probe sets) with the
expression profiles. The power of predictor genes was evaluated using an independent cohort of 96 non-small cell lung
cancer- and 6 normal lung samples. We identified a tumor signature of 5 genes that aggregates the 156 tumor and normal
samples into the expected groups. We also identified a histology signature of 75 genes, which classifies the samples in the
major histological subtypes of non-small cell lung cancer. Correlation analysis identified 17 genes which showed the best
association with post-surgery survival time. This signature was used for stratification of all patients in two risk groups.
Kaplan-Meier survival curves show that the two groups display a significant difference in post-surgery survival time
(p = 5.6E-6). The performance of the signatures was validated using a patient cohort of similar size (Duke University, n = 96).
Compared to previously published prognostic signatures for NSCLC, the 17 gene signature performed well on these two
cohorts.

Conclusions: The gene signatures identified are promising tools for histo-pathological classification of non-small cell lung
cancer, and may improve the prediction of clinical outcome.
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Introduction

Lung cancer is the most frequent cause of cancer deaths in the

North America and Europe. In Europe alone, there were 386,300

new lung cancer cases in 2006, with an estimated 334,800 deaths.

This accounts for 13.5% of all cancer deaths [1]. Based on histo-

pathological presentation, lung cancer is sub-divided into four major

histological subtypes: small cell lung cancer (SCLC), squamous cell

carcinoma (SCC), adenocarcinoma (ADC), and large cell carcinoma

(LCC). The latter three, collectively referred to as non-small cell lung

cancer (NSCLC), account for almost 80% of lung cancers [2]. At

present, treatment of NSCLC is based on histo-pathological features

and staging. However, pathologically similar tumors with comparable

stage show dramatically different response to the same therapy.

Common features at the molecular level may be able to predict such

outcome discrepancies among patients more reliably. For instance,

the efficacy of epidermal growth factor receptor (EGFR) antagonists

has been shown to depend on expression of its target -EGFR- in the

tumor [3]. Also, the beneficial effect of chemotherapies might depend

on the expression of certain proteins such as thymidine synthetase for

Pemetrexed [4]. Thus, improved classification of NSCLC is of

considerable clinical interest.

Recent advances in microarray technology enable researchers

to recapitulate molecular properties of NSCLC at the level of

individual genes [5,6,7,8,9]. However, the reproducibility of gene

expression signatures to predict high-risk of relapse or recurrence

is rarely reported. Therefore, it is highly desirable to identify

molecular classifiers that can reliably predict specific subgroups of

high- and low-risk patients. This would be helpful to select the

most appropriate therapy for individual patients.

In this study, we performed gene expression profiling on

NSCLC tumors and simultaneously collected normal lung tissue

samples in order to determine histo-pathological classifier genes

and high-risk index genes.
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Materials and Methods

A detailed description is provided in File S1.

Patient enrolment
Ninety-one NSCLC patients treated at the Erasmus MC

were included in this study. The written consent from all

participants involved in this study was obtained. Patient and

tumor characteristics are listed in Table 1. Tissues were

studied under an anonymous tissue protocol approved by the

medical ethical committee of Erasmus University Medical

Center.

We used two independent validation sets: 6 normal lung tissues

from GSE3526, and NSCLC samples from the Duke University

cohort [10].

Pathological analysis
Tumor samples were typed by two independent routine

pathological reviews, according to WHO guidelines [11].

Histochemical stains (periodic acid-Schiff and Alcian blue for

mucin) were applied when considered appropriate.

RNA Isolation and gene expression profiling
Dissected tumors and adjacent normal tissue were snap-frozen in

liquid nitrogen precooled isopentane within two hours after surgical

resection, and stored at 2196uC or 280uC until RNA extraction. 5

ı̀g of total RNA was processed for analysis on Affymetrix U133 plus

2.0 arrays using standard protocols. The complete microarray data

is MIAME compliant and deposited in a MIAME compliant

database, Gene Expression Omnibus database at www.ncbi.nlm.

nih.gov/geo/info/linking.html (GSE19188).

Table 1. Characteristics of patients and samples.

Training set Validation set

(N = 80) (N = 76)

Heath 36 29

Tumor 44 47

Mean age (years) 62.3610.81 63.5610.73

Sex-% Female 27 34

Male 73 66

Race-% Caucasian 90 89

other 5 3

unknown 5 8

Tobacco history-% None - -

#30 yr 20 24

31–49 yr 20 18

$50 yr 18 18

unknown 41 39

Tumor type (n) Path. Review 1st 2nd consistent 1st 2nd consistent

ADC 19 14 14 13 10 8

SCC 16 8 8 11 8 8

LCC 7 13 6 6 11 3

other 2 9 1 8 9 1

unknown 0 0 9 9

Stage-% Path. Review 1st 1st

IA 18 16

IB 45 42

IIA 2 -

IIB 30 21

IIIA 2 16

IIIB - -

IV 2 5

Status-% Alive 34 29

Deceased 61 63

unknown 5 8

Cause of death-% Lung cancer 27 34

other 18 18

unknown 55 47

doi:10.1371/journal.pone.0010312.t001
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Bioinformatics analyses
Multiple parameters were used to control the overall quality of

arrays. The final intensity value of probe sets was summarized as

the deviation to the geometric mean of that probe set among all

arrays. Uninformative probe sets were eliminated and the

remaining probe sets were used for subsequent analyses.

Class comparison
Two-group comparisons were performed by Significance

Analysis of Microarrays [12]. This supervised analysis correlates

gene expression with a clinical variable based on a score calculated

using the change in expression and the standard deviation across

all samples.

Class prediction
All identified signatures were subjected to identify subgroups of

genes that maintain the capacity of the complete signatures in

distinguishing different groups maximally [13]. The performance

of optimized signatures was validated by ‘‘leave-one-out’’ cross

validation within the training set firstly, then with the validation set

[14]. Hierarchical clustering was performed using the Spotfire

Decision Site.

Survival analysis
We developed a step-wise approach based on gene expression

profiles to classify NSCLC with respect to prognostic outcome.

Firstly, the Wald test in the Cox proportional hazards model was

used to identify prognostic probe-sets which were the most likely

associated with overall survival [15]. Candidate probe sets were

selected based on p-values (,0.001) computed from 1000 random

permutations. The resulting candidate survival probe sets were

subjected to a supervised analysis [16], which comprises

computation of principal components with candidate probe sets,

Cox proportional hazards regression analysis using the resulting

principal components, and finally prognostic predictor calculation

by fitting the predictive prognosis model derived from the Cox

regression. The predictive value of the prognosis model was

evaluated by performing ‘‘leave-one-out’’ cross-validation [16,17].

Figure 1. Correlation view of 156 samples from patients with NSCLC. Pairwise correlations between any two samples are displayed, based
on 4791 informative probe sets. The colors of the cells represent Pearson’s correlation coefficient values, with deeper red indicating higher positive
and deeper blue lower negative correlations. The red diagonal line displays the self-to-self comparison of each sample. Histological classification of
the samples is depicted along the diagonal; the key to the color code is shown at the bottom. Histo-path_1 & Histo-path_2: initial and second histo-
pathological review.
doi:10.1371/journal.pone.0010312.g001
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The prognostic value of the prognostic predictor relative to clinical

variables, such as age, tumor cell content (%), tumor size (diameter

of tumor), smoking year, Forced Expiratory Volume 1, gender,

histology, and tumor grade was tested by the Wald test (Table S8).

The correlation between the survival signature and clinical

parameters is summarized in Table S7.

Other NSCLC classifiers
The signatures identified in this study were compared to

published histology and prognosis signatures. The tested histology

signatures were derived from Affymetrix U95A chips {[18] and

US20040241725A1}, IntelliGene chips [9], and Stanford cDNA

oligonucleotide arrays [19] (Table S9). The survival related

signatures were 20- and 6-probe set predictors developed by Lee

et al [20], one signature derived from Affymetrix U133A chips

[21], one from Affymetrix HuGeneFL chips [22,23], two from

other types of oligonucleotide array [24,25], and one from RT-

PCR assays [26] (Table S10).

Results

Study design
Tumors (n = 91) and unaffected lung tissue samples (n = 65)

were collected from NSCLC patients undergoing lung resection at

Erasmus MC between 1992 and 2004. The tissue specimens were

snap frozen in liquid nitrogen pre-cooled isopentane and stored in

liquid nitrogen or at 280uC until further processing. The clinical

parameters of the patients enrolled in this study are summarized in

Table 1. Paraffin sections of the tumors were scored by routine

pathology and an independent pathologist (MdB) for histo-

pathological characteristics. Eight LCC samples had a high level

of cell type heterogeneity, presenting with acinar differentiation

Figure 2. Hierarchical clustering distinguishes tumors from healthy lung tissue. A: Two-dimensional hierarchical clustering of 80 training
samples, including tumors and healthy lung samples, was performed with 187 probe sets. The relative expression to the overall mean for each probe
set (rows) in each sample (columns) is indicated by a color code. B: Hierarchical clustering of 156 tissue samples with 5 probe sets yields 2 groups,
tumor and normal lung.
doi:10.1371/journal.pone.0010312.g002
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and squamous cell components. Eighteen samples had a

discrepancy in histopathological classification (Table 1 and

Fig. 1), including five representing rare types of NSCLC with a

histological composition of multiple cell types. We isolated RNA

from 25 mm cryostat sections of the snap-frozen specimens and

used this for labelling and hybridisation to Affymetrix U133 2.0

plus arrays. Tumor cell content was determined from 10 mm

sections taken at the start and end of cryostat cutting. The samples

were divided into two sets, training and validation (Table 1),

according to the criteria presented in File S1, and used for the

subsequent bioinformatics analyses. By unsupervised Pearson’s

correlation analysis, tumor samples were clearly separated from

Figure 3. Clustering analysis of NSCLC tumors with the 518 probe set histology signature. A: agglomerative hierarchical clustering of 23
NSCLC samples using the 518 probe set histology signature. The relative expression to the overall mean for each probe set (rows) in each sample
(columns) is indicated by a color code. Correlation between the samples is depicted by the dendrogram. Histo-pathological diagnosis and predictions
of histology subtype by Prediction Analysis of Microarrays, using the 518 and 75 probe set signatures, are shown by colored blocks. B: correlation
dendrogram generated by agglomerative hierarchical clustering of all 91 Erasmus MC NSCLC samples using the 518 probe set signature. Histo-
pathological diagnosis of the initial and second review, and prediction of histology subtype by Prediction Analysis of Microarrays using the 518 probe
set signature, are shown by colored blocks.
doi:10.1371/journal.pone.0010312.g003
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the healthy lung samples (Fig. 1). We therefore first sought to

derive a minimized signature gene set that could distinguish

tumors from healthy lung tissue.

Signature genes distinguish NSCLC from normal lung
tissue

To identify a signature gene set for NSCLC tumors, we

compared gene expression profiles from 44 tumors with that from

36 healthy lung tissues. Histology-driven analyses generated in

total 415 common probe-sets presenting differential expression in

three major types of NSCLC (data not shown). To find genes more

generally expressed by all NSCLC cases, all tumors were

compared to all healthy lung tissues without taking histological

information into account. By using different cut-offs in supervised

analysis, we identified sets of thousands to hundreds of probe-sets

characterizing NSCLC (Table S1). A final list of 187 probe sets

that were differentially expressed in all NSCLC samples was

determined as the Tumor Signature (Fig. 2A and Table S2). A

subset of these probe sets, 5 out of 187, was able to distinguish

non-cancerous tissues from malignant NSCLC with an accuracy of

98%, using Prediction Analysis of Microarrays (Fig. 2B and Table

S3). Two tumor and three non-cancerous lung tissue samples were

incorrectly classified by the optimized tumor signature. Of these,

one presented with an uncertain histological diagnosis, and two

were from patients who had developed multiple primary tumors.

We conclude that the expression signature of these 5 probe sets

accurately distinguishes NSCLC from healthy lung tissue,

regardless of NSCLC subtype.

NSCLC are sub-classified by histology signature genes.

As NSCLC are tumors with a high degree of heterogeneity, genes

characterizing histological features were identified using strictly

selected tumor samples. Firstly, the histological diagnosis had to be

consistent between the two independent pathology reviews.

Secondly, the samples should not display apparent tumor cell

heterogeneity. Thirdly, the content of cancer cells should be above

60%. We compared the gene expression profiles of each NSCLC

subtype to those of the other two subtypes, and identified a total of

518 probe sets representing the three major subtypes of NSCLC –

ADC, SCC, and LCC (Table S4). Using ‘‘leave-one-out’’ cross

validation, we found that the percentage of correct classification by

Prediction Analysis of Microarrays was 96% (22 out of 23) in the

training samples (Fig. 3A). When this signature was applied to

classify the validation samples, we found that the three carcinoid

(CAR) samples, which were not involved in deriving the signature,

and one LCC sample were separated from the other tumors by

clustering with the 518 probe sets, thus representing a unique

group (Fig. 3B). We note that the LCC sample in this group was

Figure 4. Prediction of histology subtype of Erasmus MC and Duke University NSCLC samples. A: correlation dendrogram generated by
agglomerative hierarchical clustering of all 91 Erasmus MC NSCLC samples using the 75 probe set histology signature. Histo-pathological diagnosis of
the initial and second review, and prediction of histology subtype by Prediction Analysis of Microarrays using the 75- and 518 probe set histology
signatures, are shown by colored blocks. B: correlation dendrogram generated by agglomerative hierarchical clustering of all 96 Duke University
NSCLC samples using the 75 probe set histology signature. The reported histo-pathological diagnosis, and prediction of histology subtype by
Prediction Analysis of Microarrays using the 75- and 518 probe set histology signatures, are shown by colored blocks. 75AS and 518AS: prediction
without the LCC probe sets in the histology signatures, using 68 and 329 probe sets respectively (see Tables S4 and S5).
doi:10.1371/journal.pone.0010312.g004
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classified as CAR by the second pathology review. The optimized

signature gene set consisted of 75 probe sets (Table S5). This

optimised signature classified the training samples with 100%

accuracy (Fig. 3A). The expression profile of those genes was

applied to predict the histology subtype of the samples with

conflicting pathology diagnoses (n = 18). With three exceptions, all

the ambiguously classified LCCs (n = 11) were determined as ADC

or SCC by the optimized gene signature, and this was consistent

with the primary diagnosis (Fig. 4A). Of the 18 samples, one had

an ambiguous diagnosis due to unsatisfactory histology, and three

had a tumor cell content of less than 20%. We note that over 60%

(n = 11) of these 18 samples presented with apparent tumor cell

type heterogeneity. Our results suggest that the 75 probe set

histology signature may aid in assigning the correct histological

classification in ambiguous cases of NSCLC.

Survival risk prediction by expression profiles
To derive prognostic information from the gene expression

profiles, we first divided NSCLC patients into groups with either

short (,2 years) or long (.5 years) overall survival. Comparing the

profiles of these two groups failed to identify any significant

differences in gene expression with a false discovery rate ,20%.

Similar negative results were obtained when the analyses were

restricted to ADC or LCC cases. A set of 29 probe sets was

identified with differential expression between SCC patients with

short- and long survival (false discovery rate ,10%; data not

shown).

Starting with the 11,515 probe sets remaining from the data

filtering process, we identified a subset of informative probe sets

that were best correlated with survival time using the Wald test

from the Cox proportional hazards model. The principal

components computed from the expression of these genes were

subjected to Cox proportional hazard regression analysis, and

built up a model for predicting a prognostic probability for each

NSCLC case. The predictive value of the prognosis model was

evaluated and optimized by performing ‘‘leave-one-out’’ cross-

validation, and resulted in an optimized model consisting of 17

probe sets. The survival signature included the EGFR gene, a

prominent gene contributing to prognosis variation in diverse

solid tumor such as breast and colorectal cancer [27,28,29,30]

(Table S6). A risk percentile cut-off of 60% was used to define

two risk groups, which were distinguished at significance

p-value = 5.6E-6 by log-rank test. A Kaplan-Meier curve

of overall survival from these two risk groups is shown in

Fig. 5A.

The association between the prognosis profile and clinical

parameters was studied. The prognosis profile was significantly

associated with age (p,0.023), smoking years (p,0.014), gender

(p,0.012) and Forced Expiratory Volume 1 (p,0.009), a

parameter reflecting lung function, but not with tumor stage,

tumor cell content, tumor histology and tumor size (Table S7). We

performed multivariate proportional hazard regression analysis to

evaluate the predictive value of the prognostic predictor for patient

outcome in comparison with other clinical parameters. No

evidence of relation was found between relative hazard ratio and

age, gender, smoking year, tumor cell content, Forced Expiratory

Volume 1, tumor histology and tumor size. Table S8 shows the

Wald statistics and significance for each variable tested. Tumor

stage and the 17 probe set prognostic predictor were significantly

related to the hazard of death. However, the prognostic predictor

presented the highest importance which was 21.682 compared to

3.797 from tumor stage. Moreover the relative hazard ratio

predicted by the prognostic predictor was 2.465 (95% confidence

interval, 1.686 to 3.604, p,1.5E-06), the highest one among all

tested risks (Table 2). Similarly, the inclusion of the prognostic

predictor to the predictive model resulted in a change in model

performance of 19.5, in terms of 22 log likelihood, with a p-value

of 9.8E-06, compared to 24.3 and 2.0E-03 introduced by the

model comprising all clinical variables. Thus, the multivariate

proportional hazard analysis strongly indicates that the gene

expression profile-derived prognostic predictor is the strongest

predictor of the likelihood of death.

Validation of signature probe sets
We studied the expression patterns of all signatures in two

independent sets of microarray data collected in the United States

(US validation set), a subset of the NSCLC cohort from Duke

University (n = 96) [10], and 6 normal lung specimens from

GSE3526 (NCBI GEO database). These were chosen because 1)

they were also analyzed on the Affymetrix U133 plus 2.0 arrays,

Figure 5. A 17 probe set signature predicts patient survival
time. Kaplan-Meier curves for A: 82 Erasmus MC NSCLC patients and B:
89 Duke University NSCLC patients fitted by their risk assignments
based on the 17 probe set survival signature. The high- and low-risk
groups differ significantly, indicated by the p-values. Grey bars indicate
patients at last follow-up, still alive.
doi:10.1371/journal.pone.0010312.g005
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and 2) the original .CEL files were available (i.e. raw rather than

pre-normalized data). The optimized 5 probe set tumor signature

performed on the US validation set with an accuracy of 97%: 93

out of 96 NSCLC were correctly classified as ‘tumor’ and all

normal lung specimens were correctly classified as ‘healthy’. Since

there were no LCC or other types of NSCLC in the Duke

University data set, we only used the ADC and SCC signature

probe sets, comprising 68 of the 75 probe sets in the histology

signature (Tables S4 and S5), for histological classification of the

Duke University NSCLC samples. For 84% of Duke University

samples, the prediction by the 68 probe set ADC/SCC signature

was consistent with the reported histology diagnosis. When the

LCC signature was included in the prediction analysis, this

percentage decreased to 83%: 2 samples were classified as LCC

(Fig. 4B). Follow-up data were available for 89 of 96 patients in the

Duke University cohort, and we calculated the prognostic

predictor for these patients using the 17 probe set survival

signature and the predictive model. The difference in the hazard

of death between the patient groups with a predicted good

prognosis and the group with a poor prognosis was 2.44-fold, with

a significance of p-value = 1.9E-03 by log-rank test. A Kaplan-

Meier curve of overall survival is shown in Fig. 5B. If the Erasmus

MC patient cohort is combined with the cohort recruited at Duke

University, the p-value reduces to 2.6E-7 (data not shown).

Comparison with published histology and prognostic
gene expression signatures

The derived 75-probeset Histology signature was compared to

published NSCLC histology signatures (Table S9) {[6,9,18,19]

and US20040241725A1}. The largest overlap was found with

histology signature identified by Garber et al [19], 12 out of 370

genes overlapped with our 75-probeset signature.

The performance of these Histology signatures was tested with

our cohort and Duke NSCLC cohort. The correct prediction on

the EMC cohort ranged from 56% to 93% (EMC), lower than the

100% correct prediction by our signature. The best performance

from published histology signatures on the Duke cohort was 83%,

comparable to that produced by EMC Histology signature (84%).

ADC-specific signatures performed better when the aimed

aggregation was limited to two groups (ADC and non-ADC;

Table S9).

A number of gene expression profiling-derived prognostic

predictors have been previously reported for NSCLC

[20,21,22,23,24,25,26]. These signatures were derived from a

wide variety of platforms and technological approaches (Table

S10). We assessed the performance of these previously reported

prognostic signatures on the Erasmus MC and Duke University

data sets. A total of 14 signatures from 6 different publications

were tested (see File S1and Table S10 for details). For each report,

the results obtained with the signature yielding the best

stratification in low- and high risk groups are displayed in

Kaplan-Meier curves (Fig. 6 and Table S10). We find that

performance of the 6-gene signature of Boutros et al [26] was

reasonable on the Duke University cohort (p-value 0.016) but not

on the Erasmus MC cohort (p-value 0.69). The 41-gene signature

reported by Shedden et al was developed for ADC samples [21].

Performance of this signature on the complete Erasmus MC and

Duke University cohorts was unsatisfactory (p-values 0.113 and

0.158 respectively). However, if the analysis was limited to samples

classified as ADC by our histology signature, this was the only

prognostic signature that performed well on both cohorts (Erasmus

MC p-value 0.016, Duke University p-value 0.019).

The observation that our 75 probe set histology and 17 probe

set prognosis signatures perform well on independent cohorts

comprising different types of NSCLC suggests that they are robust.

Discussion

In this study, we defined a set of molecular classifiers for

NSCLC. These classifiers were developed with the Erasmus MC

cohort of NSCLC patients, and validated using the independent

US cohort. The tumor signature gene set can be used to

distinguish NSCLC from unaffected lung tissue. The histology

signature gene set may aid in the histo-pathological classification of

NSCLC in ADC, SCC and LCC. In addition, we identified a

survival signature gene set that predicts overall patient survival.

Potential for improved NSCLC classification
The unique ADC, SCC, and LCC signatures differ in the

composition of genes. The ADC signature favors the genes associated

with tight junction and cell adhesion molecules. In contrast, SCC

signature genes are more correlated with pathways such as cell

communication, MAPK, P53, and WNT signaling. Genes included

in the SCC signature are NKX2-1, SOX2, FGFR2/3, TP63, PI3K,

WNT5A, members of the keratin family, and genes associated with

Ras/Rho signaling pathways, such as ERBB2/3. The histological

diagnosis of LCC is based on exclusion of the other types of NSCLC.

As a result, this subtype of NSCLC is highly heterogeneous in

histopathology and clinical presentation. LCC accounts for about

Table 2. Multivariable proportional hazard analysis of the risk of death.

HAZARD RATIO Change in -2 log likelihood Significance

(95% confidence interval)

Age 1.03 (0.99–1.07) 10.35 0.001293

Tumor cell % 1.01 (0.99–1.03) 2.16 0.141500

Stage 1.32 (1.00–1.74) 3.90 0.048425

Gender 1.00 (0.44–2.27) 2.78 0.095444

Smoking years 1.00 (0.97–1.04) 1.13 0.286797

Forced Expiratory Volume 1 1.01 (0.99–1.03) 0.51 0.476836

Tumor size 1.00 (0.98–1.03) 0.00 0.979352

Histology 0.91 (0.81–1.02) 3.49 0.061814

Prognostic predictor 2.47 (1.69–3.6) 19.55 0.000010

doi:10.1371/journal.pone.0010312.t002
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16% of lung cancers. By applying special stains and electron

microscopy it has been shown that many cases of LCC are poorly

differentiated ADC or SCC (http://www.ncbi.nlm.nih.gov/books/

bv.fcgi?rid = cmed.section.20772). The difficulty in distinguishing

LCC from other NSCLC by routine histopathology results in

considerable variation in the classification of NSCLC cases. In

contrast, all molecularly defined NSCLC subtypes share a common

gene expression profile which is distinct from the other subtypes. For

instance, a number of well-known SCC markers, such as TP63,

PERP, Keratins, and SERPINB, were uniformly expressed among a

subset of the LCC samples, suggesting that these were actually SCC.

In addition, expression profiling revealed that some of the tumors

diagnosed as SCC display neuroendocrine characteristics, indicating

that these were neuroendocrine tumors and not classical SCC. Thus,

the molecular signatures reveal specific features of the tumors. This

could be used to improve the classification of NSCLC tumors,

especially in histologically heterogeneous tumors where the signatures

would identify the most characteristic molecular features of the

samples.

This 75-probe set signature conceives molecular characteristics

of three histological subtypes, ADC, SCC, and LCC. It is

outstanding in information loadage or/and robustness of aggre-

gating NSCLC subtypes than all tested published signatures

{[9,18,19] and US20040241725A1}.

A 17- probe set signature set predicts survival
We have identified a small set of survival-associated genes that is

able to predict the prognosis independent of histo-pathological

tumor type. This novel prognostic profile covers a broad range of

NSCLC subypes, and the staging of tumors used for building the

prediction model ranged from I to IV (Table 1). Multivariate

proportional hazard analysis that included age, smoking years,

gender, Forced Expiratory Volume 1, tumor stage, tumor cell

content, tumor histology, and tumor size strongly indicates that the

Figure 6. Survival prediction by published prognostic signatures. Kaplan-Meier curves for the best performing signatures (by P-value) are
shown for 82 Erasmus MC patients (left) and 89 Duke University NSCLC patients (right), fitted by their risk assignments. Grey bars indicate patients at
last follow-up, still alive. P-values are between brackets if overall survival of the low risk group is actually lower than that of the high risk group.
doi:10.1371/journal.pone.0010312.g006

Figure 7. Correlation view of Erasmus MC and Duke University NSCLC samples. In total 187 tumor samples from the Erasmus MC (n = 91)
and Duke University (n = 96) cohorts are shown. Pairwise correlations between any two samples are displayed, based on 3495 informative probe sets.
Histological classification of the samples, and the collection source, are depicted along the diagonal. The key to the color code is shown at the
bottom. Histo-path_E1 & Histo-path_E2: initial and second histo-pathological review of Erasmus MC samples. Histo-path_D: histo-pathological review
of Duke University samples; Histo-path_P-518 and Histo-path_P-75: predictions by PAM of histological subtypes using the 518 and 75 probe set
signatures, respectively (see Tables S4 and S5).
doi:10.1371/journal.pone.0010312.g007
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gene expression profile-derived prognostic predictor is the

strongest predictor of the likelihood of death. Moreover, the

performance of these molecular predictors was similar to that in

the original dataset in an independent NSCLC patient cohort,

indicating its reproducibility and potential clinical relevance. It is

possible that the aggressiveness of tumors reflected in this signature

is shared by a variety of human cancers. This small set of genes

provides potential for application with confidence and practicality

required in the clinical setting.

Divergence of prognostic gene expression signatures
Potti et al [10] developed a metagene model to predict the risk

of recurrence for individual patients. The model was predictive for

the major types of NSCLC – ADC and SCC, and performed

reasonably satisfactory in two independent patient cohorts.

Confounding components of the metagene models contain over

100 genes. These attributes complicate the direct comparison of

the metagenes to survival signatures derived from other studies. As

such, the genes in the metagene model have no predictive power

for survival prediction (data not shown).

It has been noted before that there is very little, if any, overlap

between the reported prognostic signatures for NSCLC [25,31].

Remarkably, there is not a single gene shared by the 7 signatures

tested here (the 6 best performing previously reported signatures

and the 17 probe set signature derived in this paper). This has

been attributed to the notion that the space from which such

minimized signatures can be derived is large [25,26] and hence

there are many different possible outcomes depending on the

particular dataset and bioinformatics approaches taken. In

addition, differences between patient populations with respect to

ethnic background, tumor histology, smoking status, and other

environmental factors may have an impact. For instance, outcome

signatures make predictions beyond histological subtype, but it is

still possible that genes in the signature are histology-related.

When these signatures are applied to other datasets with different

tumor composition, they do not necessarily reflect hazard of

recurrence or chance of survival. The 41-gene prognostic

signature of Shedden et al [21] was developed with ADC samples.

We found that stratification of the Erasmus MC and Duke

University cohorts by this signature is histology-dependent, since it

only performs satisfactorily on the ADC samples in these cohorts.

For this analysis, we assigned tumor types in the Erasmus MC and

Duke University cohorts with the aid of our histology signature.

Thus, a scenario emerges where application of a histology

signature is followed by analysis with a tumor type-specific

prognostic classifier. Clearly, it is important to test whether

prognostic classifiers of NSCLC are operative beyond histological

criteria.

Alternatively, prognostic classifiers transcending tumor histology

would be more straightforward to use. To develop these, different

tumor types and subtypes should be included in the experimental

set-up. Our dataset covers a relatively broad spectrum of NSCLC,

and we have validated the signatures using independent samples

profiled using the identical platform [10]. The lack of availability

of raw microarray data (.CEL files) precludes validation of our

signatures using more independent NSCLC cohorts; the complex

issue of cross-platform meta-analysis [22,32] is beyond the scope of

this paper. Nonetheless, our signatures performed well compared

to those previously reported [20,21,22,24,25,26] when tested using

the Erasmus MC and Duke University cohorts. We note that

although the Duke University samples are clearly separated from

the Erasmus MC samples in unsupervised analysis (Fig. 7) our

signatures still perform well on the Duke University data (e.g.

Figs. 4B and 5B), indicating that they are robust.

In conclusion, the sets of molecular markers identified in this

report reveal histo-pathological attributes of NSCLC. These gene

signatures might provide clinically relevant information for

NSCLC, transcending traditional histological classification and

patient outcome prediction.

Supporting Information

File S1 Supplementary Materials and Methods.

Found at: doi:10.1371/journal.pone.0010312.s001 (0.15 MB

DOC)

Table S1 NSCLC Tumor Signature (the longest) T:N ratio

Ratio of average expression in NSCLC samples/normal lung

tissue T mean 2log transformation of mean expression value in

NSCLC samples (average of all NSCLC and normal lung

tissue = 0). N mean 2log transformation of mean expression value

in normal lung tissue samples (average of all NSCLC and normal

lung tissue = 0). T SD Standard deviation of mean expression

value in NSCLC samples N SD Standard deviation of mean

expression value in normal lung tissue samples.

Found at: doi:10.1371/journal.pone.0010312.s002 (0.21 MB

XLS)

Table S2 NSCLC Tumor Signature (long) T:N ratio Ratio of

average expression in NSCLC samples/normal lung tissue T

mean 2log transformation of mean expression value in NSCLC

samples (average of all NSCLC and normal lung tissue = 0). N

mean 2log transformation of mean expression value in normal

lung tissue samples (average of all NSCLC and normal lung

tissue = 0). T SD Standard deviation of mean expression value in

NSCLC samples N SD Standard deviation of mean expression

value in normal lung tissue samples.

Found at: doi:10.1371/journal.pone.0010312.s003 (0.05 MB

XLS)

Table S3 NSCLC Tumor Signature (short) T:N ratio Ratio of

average expression in NSCLC samples/normal lung tissue T

mean 2log transformation of mean expression value in NSCLC

samples (average of all NSCLC and normal lung tissue = 0). N

mean 2log transformation of mean expression value in normal

lung tissue samples (average of all NSCLC and normal lung

tissue = 0). T SD Standard deviation of mean expression value in

NSCLC samples N SD Standard deviation of mean expression

value in normal lung tissue samples.

Found at: doi:10.1371/journal.pone.0010312.s004 (0.02 MB

XLS)

Table S4 NSCLC Histology Signature (long) ADC:OT ratio

Ratio of average expression in ADC samples/the other NSCLC

samples (SCC and LCC) SCC:OT ratio Ratio of average

expression in SCC samples/the other NSCLC samples (ADC

and LCC) LCC:OT ratio Ratio of average expression in LCC

samples/the other NSCLC samples (ADC and SCC) ADC mean

2log transformation of mean expression value in ADC samples

(average of all Erasmus MC samples = 0). SCC mean 2log

transformation of mean expression value in SCC samples

(average of all Erasmus MC samples = 0). LCC mean 2log

transformation of mean expression value in LCC samples

(average of all Erasmus MC samples = 0). ADC SD Standard

deviation of mean expression value in ADC samples SCC SD

Standard deviation of mean expression value in SCC samples

LCC SD Standard deviation of mean expression value in LCC

samples.

Found at: doi:10.1371/journal.pone.0010312.s005 (0.15 MB

XLS)
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Table S5 NSCLC Histology Signature (short) ADC:OT ratio

Ratio of average expression in ADC samples/the other NSCLC

samples (SCC and LCC) SCC:OT ratio Ratio of average

expression in SCC samples/the other NSCLC samples (ADC

and LCC) LCC:OT ratio Ratio of average expression in LCC

samples/the other NSCLC samples (ADC and SCC) ADC mean

2log transformation of mean expression value in ADC samples

(average of all Erasmus MC samples = 0). SCC mean 2log

transformation of mean expression value in SCC samples (average

of all Erasmus MC samples = 0). LCC mean 2log transformation

of mean expression value in LCC samples (average of all Erasmus

MC samples = 0). ADC SD Standard deviation of mean

expression value in ADC samples SCC SD Standard deviation

of mean expression value in SCC samples LCC SD Standard

deviation of mean expression value in LCC samples.

Found at: doi:10.1371/journal.pone.0010312.s006 (0.03 MB

XLS)

Table S6 NSCLC Patient Survival Signature.

Found at: doi:10.1371/journal.pone.0010312.s007 (0.02 MB

XLS)

Table S7 Association between the prognostic predictor and

clinical parameters.

Found at: doi:10.1371/journal.pone.0010312.s008 (0.02 MB

XLS)

Table S8 Relation between variables and the relative hazard

ratio.

Found at: doi:10.1371/journal.pone.0010312.s009 (0.02 MB

XLS)

Table S9 Comparison of EMC histology signatures with other

NSCLC histology signatures.

Found at: doi:10.1371/journal.pone.0010312.s010 (0.02 MB

XLS)

Table S10 Comparison of EMC prognostic signatures with

other NSCLC prognostic signatures.

Found at: doi:10.1371/journal.pone.0010312.s011 (0.02 MB

XLS)
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