2,917 research outputs found

    Role of defects and impurities in doping of GaN

    Full text link
    We have calculated formation energies and position of the defect levels for all native defects and for a variety of donor and acceptor impurities employing first-principles total-energy calculations. An analysis of the numerical results gives direct insight into defect concentrations and impurity solubility with respect to growth parameters (temperature, chemical potentials) and into the mechanisms limiting the doping levels in GaN. We show how compensation and passivation by native defects or impurities, solubility issues, and incorporation of dopants on other sites influence the acceptor doping levels.Comment: 8 pages, 3 figures, to appear in "The Physics of Semiconductors

    Surface energetics and structure of the Ge wetting layer on Si(100)

    Get PDF
    Ge deposited on Si(100) initially forms heteroepitaxial layers, which grow to a critical thickness of ~3 MLs before the appearance of three-dimensional strain relieving structures. Experimental observations reveal that the surface structure of this Ge wetting layer is a dimer vacancy line (DVL) superstructure of the unstrained Ge(100) dimer reconstruction. In the following, the results of first-principles calculations of the thickness dependence of the wetting layer surface excess energy for the c(4Ă—2) and 4Ă—6 DVL surface reconstructions are reported. These results predict a wetting layer critical thickness of ~3 MLs, which is largely unaffected by the presence of dimer vacancy lines. The 4Ă—6 DVL reconstruction is found to be thermodynamically stable with respect to the c(4Ă—2) structure for wetting layers at least 2 ML thick. A strong correlation between the fraction of total surface induced deformation present in the substrate and the thickness dependence of wetting layer surface energy is also shown

    Influence of damaging and wilting red clover on lipid metabolism during ensiling and in vitro rumen incubation

    Get PDF
    This paper describes the relationship between protein-bound phenols in red clover, induced by different degrees of damaging before wilting and varying wilting duration, and in silo lipid metabolism. The ultimate effect of these changes on rumen biohydrogenation is the second focus of this paper For this experiment, red clover, damaged to different degrees (not damaged (ND), crushing or frozen/thawing (FT)) before wilting (4 or 24 h) was ensiled. Different degrees of damaging and wilting duration lead to differences in polyphenol oxidase (PPO) activity, measured as increase in protein-bound phenols. Treatment effects on fatty acid (FA) content and composition, lipid fractions (free FAs, membrane lipids (ML) and neutral fraction) and lipolysis were further studied in the silage. In FT, red clover lipolysis was markedly lower in the first days after ensiling, but this largely disappeared after 60 days of ensiling, regardless of wilting duration. This suggests an inhibition of plant lipases in FT silages. After 60 days of ensiling no differences in lipid fractions could be found between any of the treatments and differences in lipolysis were caused by reduced FA proportions in ML of wilted FT red clover Fresh, wilted (24 h) after damaging (ND or FT) and ensiled (4 or 60 days; wilted 24 h; ND or FT) red clover were also incubated in rumen fluid to study the biohydrogenation of C18:3n-3 and C18:2n-6 in vitro. Silages (both 60 days and to a lower degree 4 days) showed a lower biohydrogenation compared with fresh and wilted forages, regardless of damaging. This suggests that lipids in ensiled red clover were more protected, but this protection was not enhanced by a higher amount of protein-bound phenols in wilted FT compared with ND red clover The reduction of rumen microbial biohydrogenation with duration of red clover ensiling seems in contrast to what is expected, namely a higher biohydrogenation when a higher amount of FFA is present. This merits further investigation in relation to strategies to activate PPO toward the embedding of lipids in phenol protein complexes

    Self-driven lattice-model Monte Carlo simulations of alloy thermodynamic

    Get PDF
    Monte Carlo (MC) simulations of lattice models are a widely used way to compute thermodynamic properties of substitutional alloys. A limitation to their more widespread use is the difficulty of driving a MC simulation in order to obtain the desired quantities. To address this problem, we have devised a variety of high-level algorithms that serve as an interface between the user and a traditional MC code. The user specifies the goals sought in a high-level form that our algorithms convert into elementary tasks to be performed by a standard MC code. For instance, our algorithms permit the determination of the free energy of an alloy phase over its entire region of stability within a specified accuracy, without requiring any user intervention during the calculations. Our algorithms also enable the direct determination of composition-temperature phase boundaries without requiring the calculation of the whole free energy surface of the alloy system

    Nuclear structure study around Z=28

    Full text link
    Yrast levels of Ni, Cu and Zn isotopes for 40≤N≤5040 \leq N \leq50 have been described by state-of-the-art shell model calculations with three recently available interactions using 56^{56}Ni as a core in the f5/2pg9/2f_{5/2}pg_{9/2} model space. The results are unsatisfactory viz. large E(2+)E(2^+) for very neutron rich nuclei, small B(E2) values in comparison to experimental values. These results indicate an importance of inclusion of πf7/2\pi f_{7/2} and νd5/2\nu d_{5/2} orbitals in the model space to reproduce collectivity in this region.Comment: 12 pages, 14 figure
    • …
    corecore