265 research outputs found

    Corrosion behaviour of nitrided ferritic stainless steels for use in solid oxide fuel cell devices

    No full text
    Plasma nitriding was applied to ferritic stainless steel substrates to improve their performances as interconnects for solid oxide fuel cell devices. The samples underwent electrical conductivity test and SEM/EDS, TEM/EDS, environmental-SEM analyses. The first stages of corrosion were recorded in-situ with the e-SEM. Nitriding is effective in limiting the undesired chromium evaporation from the steel substrates and accelerates the corrosion kinetics, but its influence of the electrical conductivity is ambiguous. No intergranular corrosion is found in the steel substrate after long time operation. Nitriding helps commercially competitive porous coating to improve chromium retention properties of metal interconnects

    Spotting Solid Oxide Fuel Cell Degradation Effects by Electron Microscopy

    Get PDF
    Extended abstract of a paper presented at Microscopy and Microanalysis 2012 in Phoenix, Arizona, USA, July 29 - August 2, 201

    TEM investigation on zirconate formation and chromium poisoning in LSM/YSZ cathode

    Get PDF
    Cell durability is a crucial technological issue for SOFC commercialization, and considerable progress has been made in recent years. A number of degradation pathways have been established, amongst which microstructural changes, poisoning effects and formation of less conductive phases. In this study, transmission electron microscopy was used to observe submicron-scale effects on selected cathode zones of an anode supported cell tested in SOFC stack repeat element configuration. The test has been performed with a dedicated segmented test bench, at 800°C for 1900h, which allowed to spatially resolve degradation processes, and therefore to improve their correlation with localized post-test analysis. Evidence is presented of reaction products (mainly SrZrO3) at the LSM/YSZ interfaces as well as of contaminants, in particular Cr, but also Si. A polarized cell segment is compared to an unpolarized one, to assess any influence of cathode polarizatio

    Techno-economic evaluation of biomass-to-fuels with solid-oxide electrolyzer

    Get PDF
    Thermochemical biomass-to-fuel conversion requires an increased hydrogen concentration in the syngas derived from gasification, which is currently achieved by water–gas-shift reaction and CO2 removal. State-of-the-art biomass-to-fuels convert less than half of the biomass carbon with the remaining emitted as CO2. Full conversion of biomass carbon can be achieved by integrating solid-oxide electrolyzer with different concepts: (1) steam electrolysis with the hydrogen produced injected into syngas, and (2) co-electrolysis of CO2 and H2O to convert the CO2 captured from the syngas. This paper investigates techno-economically steam- or co-electrolysis-based biomass-to-fuel processes for producing synthetic natural gas, methanol, dimethyl ether and jet fuel, considering system-level heat integration and optimal placement of steam cycles for heat recovery. The results show that state-of-the-art biomass-to-fuels achieve similar energy efficiencies of 48–51% (based on a lower heating value) for the four different fuels. The integrated concept with steam electrolysis achieves the highest energy efficiency: 68% for synthetic natural gas, 64% for methanol, 63% for dimethyl ether, and 56% for jet fuel. The integrated concept with co-electrolysis can enhance the state-of-the-art energy efficiency to 66% for synthetic natural gas, 61% for methanol, and 54% for jet fuel. The biomass-to-dimethyl ether with co-electrolysis only reaches an efficiency of 49%, due to additional heat demand. The levelized cost of the product of the integrated concepts highly depends on the price and availability of renewable electricity. The concept with co-electrolysis allows for additional operation flexibility without renewable electricity, resulting in high annual production. Thus, with limited annual available hours of renewable electricity, biomass-to-fuel with co-electrolysis is more economically convenient than that with steam electrolysis. For a plant scale of 60 MWth biomass input with the renewable electricity available for 1800 h annually, the levelized cost of product of biomass-to-synthesis-natural-gas with co-electrolysis is 35 $/GJ, 20% lower than that with steam-electrolysis

    Electrochemical performance of Nd1.95NiO4+δ cathode supported microtubular solid oxide fuel cells

    Get PDF
    Nd1.95NiO4+δ (NNO) cathode supported microtubular cells were fabricated and characterized. This material presents superior oxygen transport properties in comparison with other commonly used cathode materials. The supporting tubes were fabricated by cold isostatic pressing (CIP) using NNO powders and corn starch as pore former. The electrolyte (GDC, gadolinia doped ceria based) was deposited by wet powder spraying (WPS) on top of pre-sintered tubes and then co-sintered. Finally, a NiO/GDC suspension was dip-coated and sintered as the anode. Optimization of the cell fabrication process is shown. Power densities at 750°C of ~40 mWcm-2 at 0.5V were achieved. These results are the first electrochemical measurements reported using NNO cathode-supported microtubular cells. Further developments of the fabrication process are needed for this type of cells in order to compete with the standard microtubular solid oxide fuel cells (SOFC).The authors thank grant MAT2009-14324-C02-01 and MAT2012-30763, financed by the Spanish Government (Ministerio de Ciencia e Innovación) and Feder program of the European Community, for funding the project.Peer Reviewe

    Fabrication and performance of Nd1.95NiO4+δ (NNO) cathode supported microtubular solid oxide fuel cells

    Get PDF
    Trabajo presentado al 10th European Solid Oxide Fuell Cell Forum celebrado en Lucerna (Suiza) del 26 al 29 de Junio de 2012.Microtubular SOFC present significant advantages in comparison with the traditional planar SOFC configuration. In particular, the tubular design facilitates sealing and also reduces thermal gradients. As a consequence, rapid starts up times are possible. In addition, another advantage of the microtubular configuration is their higher power density per unit volume. Due to these properties, those devices are especially attractive for portable applications. There has been a great interest in microtubular SOFCs in the recent years, mainly using anode supported cells. Electrolyte supported cells have also been reported, but there are relatively few investigations using the cathode as the support. In the present paper, Nd1.95NiO4+δ (NNO) has been chosen as the cathode support, as it presents superior oxygen transport properties in comparison with other commonly used cathode materials, such as LSCF or LSM, and these material has been proven as an excellent cathode for SOFC and SOEC applications. Results on the fabrication and characterization of NNO cathode supported SOFC will be presented. The tubes were fabricated by cold isostatic pressing (CIP) using NNO powders and corn starch as the pore former. The electrolyte (GDC based) was deposited by wet powder spray (WPS) on top of the pre-sintered tubes and then co-sintered. Finally, a NiOGDC paste was dip-coated as the anode. Optimization of the fabrication process as well as the electrochemical performance of single cells will be further discussed.The authors thank grant MAT2009-14324-C02-01, financed by the Spanish Government (Ministerio de Ciencia e Innovación) and Feder program of the European Community, for funding the project. M.A.L.-B. thanks the JAE program (CSIC) for financial support.Peer Reviewe

    Reduction of nickel oxide particles by hydrogen studied in an environmental TEM

    Get PDF
    In situ reduction of nickel oxide (NiO) particles is performed under 1.3mbar of hydrogen gas (H2) in an environmental transmission electron microscope (ETEM). Images, diffraction patterns and electron energy-loss spectra (EELS) are acquired to monitor the structural and chemical evolution of the system during reduction, whilst increasing the temperature. Ni nucleation on NiO is either observed to be epitaxial or to involve the formation of randomly oriented grains. The growth of Ni crystallites and the movement of interfaces result in the formation of pores within the NiO grains to accommodate the volume shrinkage associated with the reduction. Densification is then observed when the sample is nearly fully reduced. The reaction kinetics is obtained using EELS by monitoring changes in the shapes of the Ni L2,3 white lines. The activation energy for NiO reduction is calculated from the EELS data using both a physical model-fitting technique and a model-independent method. The results of the model-fitting procedure suggest that the reaction is described by Avrami models (whereby the growth and impingement of Ni domains control the reaction), in agreement with the ETEM observation

    The Impact of Toluene on the Performance of Anode-Supported Ni-YSZ SOFC Operated on Hydrogen and Biosyngas

    Get PDF
    This paper presents an experimental study of the impact of toluene on the performance of anode-supported (AS) Ni/YSZ SOFC operating at ∼800 °C, 0.25 A/cm2 fed with H2 and biosyngas. Toluene was added to the fuel stream and its concentration increased from tens to thousands of ppmv. Each poisoning test was followed by a recovery step. The main goal of this work is to define a concentration threshold of toluene as a model tar compound and to identify the degradation mechanism caused by this tar compound. Polarization behavior, IV and electrochemical impedance spectroscopy (EIS) were analyzed to evaluate the cell performance. A linear degradation is observed at concentrations above 1000 ppmv for the cell which was fed with H2. The degradation was due to local C(s) deposition. By contrast, toluene even up to 3500 ppm did not cause an increased degradation when the cell was fed with reformed biosyngas. © The Electrochemical Society

    Electrochemical Performance of Nd1.95NiO4+delta Cathode supported Microtubular Solid Oxide Fuel Cells

    Get PDF
    Nd1.95NiO4+delta (NNO) cathode supported microtubular cells were fabricated and characterized. This material presents superior oxygen transport properties in comparison with other commonly used cathode materials. The supporting tubes were fabricated by cold isostatic pressing (CIP) using NNO powders and corn starch as pore former. The electrolyte (GDC, gadolinia doped ceria based) was deposited by wet powder spraying (WPS) on top of pre-sintered tubes and then co-sintered. Finally, a NiO/GDC suspension was dip-coated and sintered as the anode. Optimization of the cell fabrication process is shown. Power densities at 750 degrees C of similar to 40 mWcm(-2) at 0.5V were achieved. These results are the first electrochemical measurements reported using NNO cathode-supported microtubular cells. Further developments of the fabrication process are needed for this type of cells in order to compete with the standard microtubular solid oxide fuel cells (SOFC)
    • …
    corecore