13,952 research outputs found

    Organic Liquid TPCs for Neutrino Physics

    Full text link
    We present a new concept for anti-neutrino detection, an organic liquid TPC with a volume of the order of m3^3 and an energy resolution of the order of 1% at 3 MeV and a sub-cm spatial resolution.Comment: 11 pages, 3 figure

    Commissioning the Double Chooz detector

    Get PDF
    The Double Chooz experiment is the first of the next wave of reactor experiments searching for a non-vanishing value of the mixing angle θ13. The experimental concept and detector design are presented, and the most pertinent backgrounds are discussed. Operation of the far detector began in early 2011. Installation of the near detector will occur in 2012. Double Chooz has the capacity to measure sin2(2θ13) to 3σ if sin2(2θ13) > 0.05 or exclude sin2(2θ13) down to 0.03 at 90% for Δm2 31 = 2.5 × 10−3 eV2 with three years of data with both near and far detectors

    Retention of Low Income Children in Three Dental Studies Investigating Early Childhood Caries

    Full text link
    Background: To our knowledge no dental studies have looked closely at subject retention, which is crucial to better understand oral health disparities. In this paper, we report retention rates and review and attempt to assess which retention strategies utilized in 3 dental research studies investigating ECC were effective for retaining WIC-enrolled children. The purpose of this paper is to discuss challenges that were encountered when working with these populations, describe characteristics of those not retained, and summarize some recommendations for future dental studies working at WIC sites. Methods: Three dental studies were conducted at WIC clinics in Iowa. Retention strategies focused on maintenance of contact over time, persistence in rescheduling appointments, utilization of incentives, high recruitment, and frequent communication with parents and program staff. Results: Retention rates in the studies ranged from 60 to 75 percent at the final research interventions. Studies were challenged by frequent moves of subjects, missed appointments, disconnected phones, busy schedules of parents, transportation problems, loss of child custody, family illness, and lack of interest. Those not retained in the studies were more likely to be younger, single, and less educated, with a lower household income and a non-Caucasian child. Lower retention was also associated with the presence of carious lesions. Conclusions: Despite many challenges, studies had good retention rates and benefited from the retention strategies. Future dental studies at WIC clinics may also benefit from arranging transportation, obtaining a free, 800 callback number, and offering after-hours appointments for working parents

    Proton decay matrix elements with domain-wall fermions

    Full text link
    Hadronic matrix elements of operators relevant to nucleon decay in grand unified theories are calculated numerically using lattice QCD. In this context, the domain-wall fermion formulation, combined with non-perturbative renormalization, is used for the first time. These techniques bring reduction of a large fraction of the systematic error from the finite lattice spacing. Our main effort is devoted to a calculation performed in the quenched approximation, where the direct calculation of the nucleon to pseudoscalar matrix elements, as well as the indirect estimate of them from the nucleon to vacuum matrix elements, are performed. First results, using two flavors of dynamical domain-wall quarks for the nucleon to vacuum matrix elements are also presented to address the systematic error of quenching, which appears to be small compared to the other errors. Our results suggest that the representative value for the low energy constants from the nucleon to vacuum matrix elements are given as |alpha| simeq |beta| simeq 0.01 GeV^3. For a more reliable estimate of the physical low energy matrix elements, it is better to use the relevant form factors calculated in the direct method. The direct method tends to give smaller value of the form factors, compared to the indirect one, thus enhancing the proton life-time; indeed for the pi^0 final state the difference between the two methods is quite appreciable.Comment: 56 pages, 17 figures, a comment and two references added in the introduction, typo corrected in Eq.1

    The Carina Flare: What can fragments in the wall tell us?

    Get PDF
    13^{13}CO(J=2--1) and C18^{18}O(J=2--1) observations of the molecular cloud G285.90+4.53 (Cloud~16) in the Carina Flare supershell (GSH287+04-17) with the APEX telescope are presented. With an algorithm DENDROFIND we identify 51 fragments and compute their sizes and masses. We discuss their mass spectrum and interpret it as being the result of the shell fragmentation process described by the pressure assisted gravitational instability - PAGI. We conclude that the explanation of the clump mass function needs a combination of gravity with pressure external to the shell.Comment: 19 pages, 14 figures, accepted by A&

    Renormalized broken-symmetry Schwinger-Dyson equations and the 2PI-1/N expansion for the O(N) model

    Full text link
    We derive the renormalized Schwinger-Dyson equations for the one- and two-point functions in the auxiliary field formulation of λϕ4\lambda \phi^4 field theory to order 1/N in the 2PI-1/N expansion. We show that the renormalization of the broken-symmetry theory depends only on the counter terms of the symmetric theory with ϕ=0\phi = 0. We find that the 2PI-1/N expansion violates the Goldstone theorem at order 1/N. In using the O(4) model as a low energy effective field theory of pions to study the time evolution of disoriented chiral condensates one has to {\em{explicitly}} break the O(4) symmetry to give the physical pions a nonzero mass. In this effective theory the {\em additional} small contribution to the pion mass due to the violation of the Goldstone theorem in the 2-PI-1/N equations should be numerically unimportant

    Simulation Study of TenTen: A new Multi-TeV IACT array

    Full text link
    TenTen is a proposed array of Imaging Atmospheric Cherenkov Telescopes (IACT) optimized for the gamma ray energy regime of 10 TeV to 100 TeV, but with a threshold of ~1 to a few TeV. It will offer a collecting area of 10 km2 above energies of 10 TeV. In the initial phase, a cell of 3 to 5 modest-sized telescopes, each with 10-30 m2 mirror area, is suggested for an Australian site. A possible expansion of the array could comprise many such cells. Here we present work on configuration and technical issues from our simulation studies of the array. Working topics include array layout, telescope size and optics, camera field of view, telescope trigger system, electronics, and site surveys.Comment: 4 pages, 7 figures, submitted to Proceedings of the ICRC 2007, pdf forma

    TenTen: A New Array of Multi-TeV Imaging Cherenkov Telescopes

    Get PDF
    The exciting results from H.E.S.S. point to a new population of gamma-ray sources at energies E > 10 TeV, paving the way for future studies and new discoveries in the multi-TeV energy range. Connected with these energies is the search for sources of PeV cosmic-rays (CRs) and the study of multi-TeV gamma-ray production in a growing number of astrophysical environments. TenTen is a proposed stereoscopic array (with a suggested site in Australia) of modest-sized (10 to 30m^2) Cherenkov imaging telescopes with a wide field of view (8 to 10deg diameter) optimised for the E~10 to 100 TeV range. TenTen will achieve an effective area of ~10 km^2 at energies above 10 TeV. We outline here the motivation for TenTen and summarise key performance parameters.Comment: 4 pages, 2 figures, proceedings of the 30th ICRC, Merida, Mexico, 200
    • …
    corecore