760 research outputs found
Local metabolic changes in subcutaneous adipose tissue during intravenous and epidural analgesia.
BACKGROUND: This clinical study aimed at investigating the impact of postoperative thoracic epidural analgesia on extracellular glycerol concentration and glucose metabolism in subcutaneous adipose tissue, using the microdialysis technique. The sympathetic nervous activity, which can be attenuated by epidural anesthesia, influences lipolysis and the release of glycerol. METHODS: Fourteen patients who underwent major abdominal or thoraco-abdominal surgery were studied postoperatively over 3 days. For postoperative analgesia the patients were prospectively randomized to receive either thoracic epidural analgesia with a bupivacaine/morphine infusion (EPI-group, n=6) or a continuous i.v. infusion of morphine (MO-group, n=8). The concentration of glycerol, glucose and lactate in the abdominal and deltoid subcutaneous adipose tissue were measured using a microdialysis technique. RESULTS: The abdominal glycerol levels were equal in both groups. In the deltoid region of the EPI-group, glycerol concentrations started to increase on Day 2, and reached significantly higher levels on Day 3 compared with the MO-group. The glucose and lactate levels showed no differences between groups in the two regions. CONCLUSION: The uniform glycerol levels in abdominal subcutaneous adipose tissue in conjunction with the difference in glycerol levels in the deltoid area indicate that the local lipolysis is different in the two study groups. This might be explained by a regional metabolic influence of thoracic epidural analgesia, possibly via the sympathetic nervous system
Metabolism during anaesthesia and recovery in colic and healthy horses: a microdialysis study
<p>Abstract</p> <p>Background</p> <p>Muscle metabolism in horses has been studied mainly by analysis of substances in blood or plasma and muscle biopsy specimens. By using microdialysis, real-time monitoring of the metabolic events in local tissue with a minimum of trauma is possible. There is limited information about muscle metabolism in the early recovery period after anaesthesia in horses and especially in the colic horse. The aims were to evaluate the microdialysis technique as a complement to plasma analysis and to study the concentration changes in lactate, pyruvate, glucose, glycerol, and urea during anaesthesia and in the recovery period in colic horses undergoing abdominal surgery and in healthy horses not subjected to surgery.</p> <p>Methods</p> <p>Ten healthy university-owned horses given anaesthesia alone and ten client-owned colic horses subjected to emergency abdominal surgery were anaesthetised for a mean (range) of 230 min (193–273) and 208 min (145–300) respectively. Venous blood samples were taken before anaesthesia. Venous blood sampling and microdialysis in the gluteal muscle were performed during anaesthesia and until 24 h after anaesthesia. Temporal changes and differences between groups were analysed with an ANOVA for repeated measures followed by Tukey Post Hoc test or Planned Comparisons.</p> <p>Results</p> <p>Lactate, glucose and urea, in both dialysate and plasma, were higher in the colic horses than in the healthy horses for several hours after recovery to standing. In the colic horses, lactate, glucose, and urea in dialysate, and lactate in plasma increased during the attempts to stand. The lactate-to-pyruvate ratio was initially high in sampled colic horses but decreased over time. In the colic horses, dialysate glycerol concentrations varied considerably whereas in the healthy horses, dialysate glycerol was elevated during anaesthesia but decreased after standing. In both groups, lactate concentration was higher in dialysate than in plasma. The correspondence between dialysate and plasma concentrations of glucose, urea and glycerol varied.</p> <p>Conclusion</p> <p>Microdialysis proved to be suitable in the clinical setting for monitoring of the metabolic events during anaesthesia and recovery. It was possible with this technique to show greater muscle metabolic alterations in the colic horses compared to the healthy horses in response to regaining the standing position.</p
Imaging the Dopamine Uptake Site with Ex Vivo [ 18 F]GBR 13119 Binding Autoradiography in Rat Brain
We studied the binding of [ 18 F]GBR 13119 {1-[[(4-[ 18 F]fluorophenyl) (phenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine} to rat brain with autoradiography after intravenous injection. The rank order of binding was dorsal striatum > nucleus accumbens = olfactory tubercle > sub-stantia nigra = ventral tegmental area > other areas. Binding was blocked by prior injection of dopamine uptake blockers but not by injection of dopamine receptor antagonists or drugs that bind to the dialkylpiperazine site. Unilateral 6-hydroxy dopamine lesions of dopamine neurons caused a marked decrease in striatal and nigral binding on the side of the lesion. We conclude that intravenous injection of [ 18 F]GBR 13119 provides a useful marker of presynaptic dopamine uptake sites.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66209/1/j.1471-4159.1990.tb04178.x.pd
On the Use of Multiple Probe Insertions at the Same Site for Repeated Intracerebral Microdialysis Experiments in the Nigrostriatal Dopamine System of Rats
The effects of implantation of a dialysis probe into the striatum of awake rats on indices of dopamine (DA) and serotonin neurotransmission were assessed, first over 24 h following initial insertion of a probe, and then again following reinsertion of a probe at the same site 1 week later. It was found that the basal concentration of DA in dialysate stabilized within 20–40 min after probe implantation, although DA showed a modest decline 24 h later. There was, however, no significant difference in basal DA between two test sessions separated by 1 week. On the other hand, the basal concentrations of the DA metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, progressively increased for 2–3 h after probe implantation and decreased markedly by 24 h later. Furthermore, in contrast to DA, the DA metabolites decreased even further after the second probe insertion. Amphetamine-stimulated DA release was also greatly attenuated following the second probe insertion, relative to the first probe insertion. Two probe insertions had only modest effects on the concentration of 5-hydroxyindoleacetic acid in dialysate, relative to the DA metabolites. It is suggested the effects of two probe insertions on DA metabolism and amphetamine-stimulated DA release described here are indicative of probe-induced damage to the nigrostriatal DA system. If this is the case, multiple probe insertions may not provide a feasible strategy for within-subjects design dialysis experiments over extended periods of time, at least in the DA system of small animals. It is suggested further that a stable basal concentration of DA in dialysate may be an especially poor indicator of the integrity of the dopaminergic input to the striatum.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65235/1/j.1471-4159.1992.tb10044.x.pd
In vivo measurement of tumor estradiol and Vascular Endothelial Growth Factor in breast cancer patients
© 2008 Garvin and Dabrosin; licensee BioMed Central Ltd
Consensus statement from the 2014 International Microdialysis Forum.
Microdialysis enables the chemistry of the extracellular interstitial space to be monitored. Use of this technique in patients with acute brain injury has increased our understanding of the pathophysiology of several acute neurological disorders. In 2004, a consensus document on the clinical application of cerebral microdialysis was published. Since then, there have been significant advances in the clinical use of microdialysis in neurocritical care. The objective of this review is to report on the International Microdialysis Forum held in Cambridge, UK, in April 2014 and to produce a revised and updated consensus statement about its clinical use including technique, data interpretation, relationship with outcome, role in guiding therapy in neurocritical care and research applications.We gratefully acknowledge financial support for participants as follows: P.J.H. - National Institute for Health Research (NIHR) Professorship and the NIHR Biomedical Research Centre, Cambridge; I.J. – Medical Research Council (G1002277 ID 98489); A. H. - Medical Research Council, Royal College of Surgeons of England; K.L.H.C. - NIHR Biomedical Research Centre, Cambridge (Neuroscience Theme; Brain Injury and Repair Theme); M.G.B. - Wellcome Trust Dept Health Healthcare Innovation Challenge Fund (HICF-0510-080); L. H. - The Swedish Research Council, VINNOVA and Uppsala Berzelii Technology Centre for Neurodiagnostics; S. M. - Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico; D.K.M. - NIHR Senior Investigator Award to D.K.M., NIHR Cambridge Biomedical Research Centre (Neuroscience Theme), FP7 Program of the European Union; M. O. - Swiss National Science Foundation and the Novartis Foundation for Biomedical Research; J.S. - Fondo de Investigación Sanitaria (Instituto de Salud Carlos III) (PI11/00700) co-financed by the European Regional Development; M.S. – NIHR University College London Hospitals Biomedical Research Centre; N. S. - Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico.This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00134-015-3930-
Methamphetamine-Induced Dopamine-Independent Alterations in Striatal Gene Expression in the 6-Hydroxydopamine Hemiparkinsonian Rats
Unilateral injections of 6-hydroxydopamine into the medial forebrain bundle are used extensively as a model of Parkinson's disease. The present experiments sought to identify genes that were affected in the dopamine (DA)–denervated striatum after 6-hydroxydopamine-induced destruction of the nigrostriatal dopaminergic pathway in the rat. We also examined whether a single injection of methamphetamine (METH) (2.5 mg/kg) known to cause changes in gene expression in the normally DA-innervated striatum could still influence striatal gene expression in the absence of DA. Unilateral injections of 6-hydroxydopamine into the medial forebrain bundle resulted in METH-induced rotational behaviors ipsilateral to the lesioned side and total striatal DA depletion on the lesioned side. This injection also caused decrease in striatal serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) levels. DA depletion was associated with increases in 5-HIAA/5-HT ratios that were potentiated by the METH injection. Microarray analyses revealed changes (± 1.7-fold, p<0.025) in the expression of 67 genes on the lesioned side in comparison to the intact side of the saline-treated hemiparkinsonian animals. These include follistatin, neuromedin U, and tachykinin 2 which were up-regulated. METH administration caused increases in the expression of c-fos, Egr1, and Nor-1 on the intact side. On the DA-depleted side, METH administration also increased the expression of 61 genes including Pdgf-d and Cox-2. There were METH-induced changes in 16 genes that were common in the DA-innervated and DA-depleted sides. These include c-fos and Nor-1 which show greater changes on the normal DA side. Thus, the present study documents, for the first time, that METH mediated DA-independent changes in the levels of transcripts of several genes in the DA-denervated striatum. Our results also implicate 5-HT as a potential player in these METH-induced alterations in gene expression because the METH injection also caused significant increases in 5-HIAA/5-HT ratios on the DA-depleted side
Nicotinamide Inhibits Alkylating Agent-Induced Apoptotic Neurodegeneration in the Developing Rat Brain
BACKGROUND: Exposure to the chemotherapeutic alkylating agent thiotepa during brain development leads to neurological complications arising from neurodegeneration and irreversible damage to the developing central nerve system (CNS). Administration of single dose of thiotepa in 7-d postnatal (P7) rat triggers activation of apoptotic cascade and widespread neuronal death. The present study was aimed to elucidate whether nicotinamide may prevent thiotepa-induced neurodegeneration in the developing rat brain. METHODOLOGY/PRINCIPAL FINDINGS: Neuronal cell death induced by thiotepa was associated with the induction of Bax, release of cytochrome-c from mitochondria into the cytosol, activation of caspase-3 and cleavage of poly (ADP-ribose) polymerase (PARP-1). Post-treatment of developing rats with nicotinamide suppressed thiotepa-induced upregulation of Bax, reduced cytochrome-c release into the cytosol and reduced expression of activated caspase-3 and cleavage of PARP-1. Cresyl violet staining showed numerous dead cells in the cortex hippocampus and thalamus; post-treatment with nicotinamide reduced the number of dead cells in these brain regions. Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end-labeling (TUNEL) and immunohistochemical analysis of caspase-3 show that thiotepa-induced cell death is apoptotic and that it is inhibited by nicotinamide treatment. CONCLUSION: Nicotinamide (Nic) treatment with thiotepa significantly improved neuronal survival and alleviated neuronal cell death in the developing rat. These data demonstrate that nicotinamide shows promise as a therapeutic and neuroprotective agent for the treatment of neurodegenerative disorders in newborns and infants
The role of GRK6 in animal models of Parkinson's Disease and L-DOPA treatment
G protein-coupled Receptor Kinase 6 (GRK6) belongs to a family of kinases that phosphorylate GPCRs. GRK6 levels were found to be altered in Parkinson's Disease (PD) and D2 dopamine receptors are supersensitive in mice lacking GRK6 (GRK6-KO mice). To understand how GRK6 modulates the behavioral manifestations of dopamine deficiency and responses to L-DOPA, we used three approaches to model PD in GRK6-KO mice: 1) the cataleptic response to haloperidol; 2) introducing GRK6 mutation to an acute model of absolute dopamine deficiency, DDD mice; 3) hemiparkinsonian 6-OHDA model. Furthermore, dopamine-related striatal signaling was analyzed by assessing the phosphorylation of AKT/GSK3β and ERK1/2. GRK6 deficiency reduced cataleptic behavior, potentiated the acute effect of L-DOPA in DDD mice, reduced rotational behavior in hemi-parkinsonian mice, and reduced abnormal involuntary movements induced by chronic L-DOPA. These data indicate that approaches to regulate GRK6 activity could be useful in modulating both therapeutic and side-effects of L-DOPA
- …