818 research outputs found

    Mesoscopic Spin-Boson Models of Trapped Ions

    Get PDF
    Trapped ions arranged in Coulomb crystals provide us with the elements to study the physics of a single spin coupled to a boson bath. In this work we show that optical forces allow us to realize a variety of spin-boson models, depending on the crystal geometry and the laser configuration. We study in detail the Ohmic case, which can be implemented by illuminating a single ion with a travelling wave. The mesoscopic character of the phonon bath in trapped ions induces new effects like the appearance of quantum revivals in the spin evolution.Comment: 4.4 pages, 5 figure

    Fermionic Mach-Zehnder interferometer subject to a quantum bath

    Full text link
    We study fermions in a Mach-Zehnder interferometer, subject to a quantum-mechanical environment leading to inelastic scattering, decoherence, renormalization effects, and time-dependent conductance fluctuations. Both the loss of interference contrast as well as the shot noise are calculated, using equations of motion and leading order perturbation theory. The full dependence of the shot-noise correction on setup parameters, voltage, temperature and the bath spectrum is presented. We find an interesting contribution due to correlations between the fluctuating renormalized phase shift and the output current, discuss the limiting behaviours at low and high voltages, and compare with simpler models of dephasing.Comment: 5 pages, 3 figure

    A many-fermion generalization of the Caldeira-Leggett model

    Full text link
    We analyze a model system of fermions in a harmonic oscillator potential under the influence of a dissipative environment: The fermions are subject to a fluctuating force deriving from a bath of harmonic oscillators. This represents an extension of the well-known Caldeira-Leggett model to the case of many fermions. Using the method of bosonization, we calculate one- and two-particle Green's functions of the fermions. We discuss the relaxation of a single extra particle added above the Fermi sea, considering also dephasing of a particle added in a coherent superposition of states. The consequences of the separation of center-of-mass and relative motion, the Pauli principle, and the bath-induced effective interaction are discussed. Finally, we extend our analysis to a more generic coupling between system and bath, that results in complete thermalization of the system.Comment: v3: fixed pdf problem; v2: added exact formula (Eq. 42) for Green's function and discussion of equilibrium density matrix (new Fig. 2); 10 figures, 21 pages, see quant-ph/0305098 for brief version of some of these result

    Naturally-phasematched second harmonic generation in a whispering gallery mode resonator

    Get PDF
    We demonstrate for the first time natural phase matching for optical frequency doubling in a high-Q whispering gallery mode resonator made of Lithium Niobate. A conversion efficiency of 9% is achieved at 30 micro Watt in-coupled continuous wave pump power. The observed saturation pump power of 3.2 mW is almost two orders of magnitude lower than the state-of-the-art. This suggests an application of our frequency doubler as a source of non-classical light requiring only a low-power pump, which easily can be quantum noise limited. Our theoretical analysis of the three-wave mixing in a whispering gallery mode resonator provides the relative conversion efficiencies for frequency doubling in various modes

    Quantum squeezing of motion in a mechanical resonator

    Get PDF
    As a result of the quantum, wave-like nature of the physical world, a harmonic oscillator can never be completely at rest. Even in the quantum ground state, its position will always have fluctuations, called the zero-point motion. Although the zero-point fluctuations are unavoidable, they can be manipulated. In this work, using microwave frequency radiation pressure, we both prepare a micron-scale mechanical system in a state near the quantum ground state and then manipulate its thermal fluctuations to produce a stationary, quadrature-squeezed state. We deduce that the variance of one motional quadrature is 0.80 times the zero-point level, or 1 dB of sub-zero-point squeezing. This work is relevant to the quantum engineering of states of matter at large length scales, the study of decoherence of large quantum systems, and for the realization of ultra-sensitive sensing of force and motion

    Universal dephasing in a chiral 1D interacting fermion system

    Full text link
    We consider dephasing by interactions in a one-dimensional chiral fermion system (e.g. a Quantum Hall edge state). For finite-range interactions, we calculate the spatial decay of the Green's function at fixed energy, which sets the contrast in a Mach-Zehnder interferometer. Using a physically transparent semiclassical ansatz, we find a power-law decay of the coherence at high energies and zero temperature (T=0), with a universal asymptotic exponent of 1, independent of the interaction strength. We obtain the dephasing rate at T>0 and the fluctuation spectrum acting on an electron.Comment: 5 pages, 3 figures; minor changes, version as published

    Quantum reconstruction of an intense polarization squeezed optical state

    Get PDF
    We perform a reconstruction of the polarization sector of the density matrix of an intense polarization squeezed beam starting from a complete set of Stokes measurements. By using an appropriate quasidistribution, we map this onto the Poincare space providing a full quantum mechanical characterization of the measured polarization state.Comment: 4 pages, 4 eps color figure

    Ground State Energy Fluctuations of a System Coupled to a Bath

    Full text link
    It is often argued that a small non-degenerate quantum system coupled to a bath has a fixed energy in its ground state since a fluctuation in energy would require an energy supply from the bath. We consider a simple model of a harmonic oscillator (the system) coupled to a linear string and determine the mean squared energy fluctuations. We also analyze the two time correlator of the energy and discuss its behavior for a finite string.Comment: 5 pages, 2 eps figures, minor change

    Hybrid-Entanglement in Continuous Variable Systems

    Get PDF
    Entanglement is one of the most fascinating features arising from quantum-mechanics and of great importance for quantum information science. Of particular interest are so-called hybrid-entangled states which have the intriguing property that they contain entanglement between different degrees of freedom (DOFs). However, most of the current continuous variable systems only exploit one DOF and therefore do not involve such highly complex states. We break this barrier and demonstrate that one can exploit squeezed cylindrically polarized optical modes to generate continuous variable states exhibiting entanglement between the spatial and polarization DOF. We show an experimental realization of these novel kind of states by quantum squeezing an azimuthally polarized mode with the help of a specially tailored photonic crystal fiber

    Assessing the Polarization of a Quantum Field from Stokes Fluctuation

    Get PDF
    We propose an operational degree of polarization in terms of the variance of the projected Stokes vector minimized over all the directions of the Poincar\'e sphere. We examine the properties of this degree and show that some problems associated with the standard definition are avoided. The new degree of polarization is experimentally determined using two examples: a bright squeezed state and a quadrature squeezed vacuum.Comment: 4 pages, 2 figures. Comments welcome
    corecore