876 research outputs found

    Co-ordination of the International Network of Nuclear Structure and Decay Data Evaluators; Summary Report of an IAEA Technical Meeting

    Get PDF
    The IAEA Nuclear Data Section convened the 18th meeting of the International Network of Nuclear Structure and Decay Data Evaluators at the IAEA Headquarters, Vienna, 23 to 27 March 2009. This meeting was attended by 22 scientists from 14 Member States, plus IAEA staff, concerned with the compilation, evaluation and dissemination of nuclear structure and decay data. A summary of the meeting, recommendations/conclusions, data centre reports, and various proposals considered, modified and agreed by the participants are contained within this document. The International Network of Nuclear Structure and Decay Data (NSDD) Evaluators holds biennial meetings under the auspices of the IAEA, and consists of evaluation groups and data service centres in several countries. This network has the objective of providing up-to-date nuclear structure and decay data for all known nuclides by evaluating all existing experimental data. Data resulting from this international evaluation collaboration is included in the Evaluated Nuclear Structure Data File (ENSDF) and published in the journals Nuclear Physics A and Nuclear Data Sheets (NDS)

    The Nuclear Science References (NSR) Database and Web Retrieval System

    Full text link
    The Nuclear Science References (NSR) database together with its associated Web interface, is the world's only comprehensive source of easily accessible low- and intermediate-energy nuclear physics bibliographic information for more than 200,000 articles since the beginning of nuclear science. The weekly-updated NSR database provides essential support for nuclear data evaluation, compilation and research activities. The principles of the database and Web application development and maintenance are described. Examples of nuclear structure, reaction and decay applications are specifically included. The complete NSR database is freely available at the websites of the National Nuclear Data Center http://www.nndc.bnl.gov/nsr and the International Atomic Energy Agency http://www-nds.iaea.org/nsr.Comment: 16 pages, 5 figure

    Idiopathic granulomatous mastitis masquerading as carcinoma of the breast: a case report and review of the literature

    Get PDF
    BACKGROUND: Idiopathic granulomatous mastitis is an uncommon, benign entity with a diagnosis of exclusion. The typical clinical presentation of idiopathic granulomatous mastitis often mimics infection or malignancy. As a result, histopathological confirmation of idiopathic granulomatous mastitis combined with exclusion of infection, malignancy and other causes of granulomatous disease is absolutely necessary. CASE PRESENTATION: We present a case of a young woman with idiopathic granulomatous mastitis, initially mistaken for mastitis as well as breast carcinoma, and successfully treated with a course of corticosteroids. CONCLUSION: There is no clear clinical consensus regarding the ideal therapeutic management of idiopathic granulomatous mastitis. Treatment options include expectant management with spontaneous remission, corticosteroid therapy, immunosuppressive agents and extensive surgery for refractory cases

    NNDC Data Services

    Get PDF
    The National Nuclear Data Center has provided remote access to some of its resources since 1986. The major databases and other resources available currently through NNDC Web site are summarized. The National Nuclear Data Center (NNDC) has provided remote access to the nuclear physics databases it maintains and to other resources since 1986. With considerable innovation access is now mostly through the Web. The NNDC Web pages have been modernized to provide a consistent state-of-the-art style. The improved database services and other resources available from the NNOC site at www.nndc.bnl.govwill be described

    Highly charged ions in Penning traps, a new tool for resolving low lying isomeric states

    Full text link
    The use of highly charged ions increases the precision and resolving power, in particular for short-lived species produced at on-line radio-isotope beam facilities, achievable with Penning trap mass spectrometers. This increase in resolving power provides a new and unique access to resolving low-lying long-lived (T1/2>50T_{1/2} > 50 ms) nuclear isomers. Recently, the 111.19(22)111.19(22) keV (determined from γ\gamma-ray spectroscopy) isomeric state in 78^{78}Rb has been resolved from the ground state, in a charge state of q=8+q=8+ with the TITAN Penning trap at the TRIUMF-ISAC facility. The excitation energy of the isomer was measured to be 108.7(6.4)108.7(6.4) keV above the ground state. The extracted masses for both the ground and isomeric states, and their difference, agree with the AME2003 and Nuclear Data Sheet values. This proof of principle measurement demonstrates the feasibility of using Penning trap mass spectrometers coupled to charge breeders to study nuclear isomers and opens a new route for isomer searches.Comment: 8 pages, 6 figure

    A new barrier penetration formula and its application to alpha-decay half-lives

    Full text link
    Starting from the WKB approximation, a new barrier penetration formula is proposed for potential barriers containing a long-range Coulomb interaction. This formula is especially proper for the barrier penetration with penetration energy much lower than the Coulomb barrier. The penetrabilities calculated from the new formula agree well with the results from the WKB method. As a first attempt, this new formula is used to evaluate alpha decay half-lives of atomic nuclei and a good agreement with the experiment is obtained.Comment: RevTeX4, 7 pages, 3 figures; to be published in Int. J. Mod. Phys.

    Coherent photonuclear reactions for isotope transmutation

    Full text link
    Coherent photonuclear isotope transmutation (CPIT) produces exclusively radioactive isotopes (RIs) by coherent photonuclear reactions via E1 giant resonances. Photons to be used are medium energy photons produced by laser photons backscattered off GeV electrons. The cross sections are as large as 0.2 - 0.6 b, being independent of individual nuclides. A large fraction of photons is effectively used for the photonuclear reactions, while the scattered GeV electrons remain in the storage ring to be re-used. CPIT with medium energy photons provides specific/desired RIs with the high rate and the high density for nuclear science, molecular biology and for nuclear medicines.Comment: 8 pages, 2 figure

    The Aims and Activities of the International Network of Nuclear Structure and Decay Data Evaluators.

    Get PDF
    International Network of Nuclear Structure and Decay Data (NSDD) Evaluators consists of a number of evaluation groups and data service centers in several countries that appreciate the merits of working together to maintain and ensure the quality and comprehensive content of the ENSDF database (Evaluated Nuclear Structure Data File). Biennial meetings of the network are held under the auspices of the International Atomic Energy Agency (IAEA) to assign evaluation responsibilities, monitor progress, discuss improvements and emerging difficulties, and agree on actions to be undertaken by individual members. The evaluated data and bibliographic details are made available to users via various media, such as the journals ''Nuclear Physics A'' and ''Nuclear Data Sheets'', the World Wide Web, on CD-ROM, wall charts of the nuclides and ''Nuclear Wallet Cards''. While the ENSDF master database is maintained by the US National Nuclear Data Center at the Brookhaven National Laboratory, these data are also available from other nuclear data centers including the IAEA Nuclear Data Section. The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy, in cooperation with the IAEA, organizes workshops on NSDD at regular intervals. The primary aims of these particular workshops are to provide hands-on training in the data evaluation processes, and to encourage new evaluators to participate in NSDD activities. The technical contents of these NSDD workshops are described, along with the rationale for the inclusion of various topics

    Population of isomers in decay of the giant dipole resonance

    Full text link
    The value of an isomeric ratio (IR) in N=81 isotones (137^{137}Ba, 139^{139}Ce, 141^{141}Nd and 143^{143}Sm) is studied by means of the (γ,n)\gamma, n) reaction. This quantity measures a probability to populate the isomeric state in respect to the ground state population. In (γ,n)\gamma, n) reactions, the giant dipole resonance (GDR) is excited and after its decay by a neutron emission, the nucleus has an excitation energy of a few MeV. The forthcoming γ\gamma decay by direct or cascade transitions deexcites the nucleus into an isomeric or ground state. It has been observed experimentally that the IR for 137^{137}Ba and 139 ^{139}Ce equals about 0.13 while in two heavier isotones it is even less than half the size. To explain this effect, the structure of the excited states in the energy region up to 6.5 MeV has been calculated within the Quasiparticle Phonon Model. Many states are found connected to the ground and isomeric states by E1E1, E2E2 and M1M1 transitions. The single-particle component of the wave function is responsible for the large values of the transitions. The calculated value of the isomeric ratio is in very good agreement with the experimental data for all isotones. A slightly different value of maximum energy with which the nuclei rest after neutron decay of the GDR is responsible for the reported effect of the A-dependence of the IR.Comment: 16 pages, 4 Fig
    corecore