53 research outputs found
Fast optical control of spin in semiconductor interfacial structures
We report on a picosecond-fast optical removal of spin polarization from a
self-confined photo-carrier system at an undoped GaAs/AlGaAs interface
possessing superior long-range and high-speed spin transport properties. We
employed a modified resonant spin amplification technique with unequal
intensities of subsequent pump pulses to experimentally distinguish the
evolution of spin populations originating from different excitation laser
pulses. We demonstrate that the density of spins, which is injected into the
system by means of the optical orientation, can be controlled by reducing the
electrostatic confinement of the system using an additional generation of
photocarriers. It is also shown that the disturbed confinement recovers within
hundreds of picoseconds after which spins can be again photo-injected into the
system
Voigt effect-based wide-field magneto-optical microscope integrated in a pump-probe experimental setup
In this work, we describe an experimental setup for a spatially resolved pump-probe experiment with an integrated wide-field magneto-optical (MO) microscope. The MO microscope can be used to study ferromagnetic materials with both perpendicular-to-plane and in-plane magnetic anisotropy via polar Kerr and Voigt effects, respectively. The functionality of the Voigt effect-based microscope was tested using an in-plane magnetized ferromagnetic semiconductor (Ga,Mn)As. It was revealed that the presence of mechanical defects in the (Ga,Mn)As epilayer alters significantly the magnetic anisotropy in their proximity. The importance of MO experiments with simultaneous temporal and spatial resolutions was demonstrated using a (Ga,Mn)As sample attached to a piezoelectric transducer, which produces a voltage-controlled strain. We observed a considerably different behavior in different parts of the sample that enabled us to identify sample parts where the epilayer magnetic anisotropy was significantly modified by the presence of the piezoelectric transducer and where it was not. Finally, we discuss the possible applicability of our experimental setup for the research of compensated antiferromagnets, where only MO effects even in magnetic moments are present
Electrochemical evidence of catalysis of oxygen reduction at the polarized liquid–liquid interface by tetraphenylporphyrin monoacid and diacid
Cyclic voltammetry is used to study the role of 5,10,15,20-tetraphenyl-21H,23H-porphine (H2TPP) in the reduction of molecular oxygen by decamethylferrocene (DMFc) at the polarized water|1,2-dichloroethane (DCE) interface. It is shown that this rather slow reaction proceeds remarkably faster in the presence of tetraphenylporphyrin monoacid (H3TPP+) and diacid (H4TPP2+), which are formed in DCE by the successive transfer of two protons from the acidified aqueous phase. A mechanism is proposed, which includes the formation of adduct between H3TPP+ or H4TPP2+ and O2 that is followed by electron transfer from DMFc to the adduct leading to the observed production of DMFc+ and to the regeneration of H2TPP or H3TPP+, respectively
Direct measurement of the three dimensional magnetization vector trajectory in GaMnAs by a magneto-optical pump-and-probe method
We report on a quantitative experimental determination of the
three-dimensional magnetization vector trajectory in GaMnAs by means of the
static and time-resolved pump-and-probe magneto-optical measurements. The
experiments are performed in a normal incidence geometry and the time evolution
of the magnetization vector is obtained without any numerical modeling of
magnetization dynamics. Our experimental method utilizes different polarization
dependences of the polar Kerr effect and magnetic linear dichroism to
disentangle the pump-induced out-of-plane and in-plane motions of
magnetization, respectively. We demonstrate that the method is sensitive enough
to allow for the determination of small angle excitations of the magnetization
in GaMnAs. The method is readily applicable to other magnetic materials with
sufficiently strong circular and linear magneto-optical effects.Comment: main paper: 7 pages, 3 figures; supplementary information: 11 pages,
6 figure
Experimental observation of the optical spin transfer torque
The spin transfer torque is a phenomenon in which angular momentum of a spin
polarized electrical current entering a ferromagnet is transferred to the
magnetization. The effect has opened a new research field of electrically
driven magnetization dynamics in magnetic nanostructures and plays an important
role in the development of a new generation of memory devices and tunable
oscillators. Optical excitations of magnetic systems by laser pulses have been
a separate research field whose aim is to explore magnetization dynamics at
short time scales and enable ultrafast spintronic devices. We report the
experimental observation of the optical spin transfer torque, predicted
theoretically several years ago building the bridge between these two fields of
spintronics research. In a pump-and-probe optical experiment we measure
coherent spin precession in a (Ga,Mn)As ferromagnetic semiconductor excited by
circularly polarized laser pulses. During the pump pulse, the spin angular
momentum of photo-carriers generated by the absorbed light is transferred to
the collective magnetization of the ferromagnet. We interpret the observed
optical spin transfer torque and the magnetization precession it triggers on a
quantitative microscopic level. Bringing the spin transfer physics into optics
introduces a fundamentally distinct mechanism from the previously reported
thermal and non-thermal laser excitations of magnets. Bringing optics into the
field of spin transfer torques decreases by several orders of magnitude the
timescales at which these phenomena are explored and utilized.Comment: 11 pages, 4 figure
Enhancement of the spin Hall voltage in a reverse-biased planar p-n junction
We report an experimental demonstration of a local amplification of the spin Hall voltage using an expanding depletion zone at a p-n junction in GaAs/AlGaAs Hall-bar microdevices. It is demonstrated that the depletion zone can be spatially expanded by applying reverse bias by at least 10 ÎĽm at low temperature. In the depleted regime, the spin Hall signals reached more than one order of magnitude higher values than in the normal regime at the same electrical current flowing through the microdevice. It is shown that the p-n bias has two distinct effects on the detected spin Hall signal. It controls the local drift field at the Hall cross which is highly nonlinear in the p-n bias due to the shift of the depletion front. Simultaneously, it produces a change in the spin-transport parameters due to the nonlinear change in the carrier density at the Hall cross with the p-n bias
Experimental observation of the optical spin-orbit torque
Spin polarized carriers electrically injected into a magnet from an external
polarizer can exert a spin transfer torque (STT) on the magnetization. The phe-
nomenon belongs to the area of spintronics research focusing on manipulating
magnetic moments by electric fields and is the basis of the emerging
technologies for scalable magnetoresistive random access memories. In our
previous work we have reported experimental observation of the optical
counterpart of STT in which a circularly polarized pump laser pulse acts as the
external polarizer, allowing to study and utilize the phenomenon on several
orders of magnitude shorter timescales than in the electric current induced
STT. Recently it has been theoretically proposed and experimentally
demonstrated that in the absence of an external polarizer, carriers in a magnet
under applied electric field can develop a non-equilibrium spin polarization
due to the relativistic spin-orbit coupling, resulting in a current induced
spin-orbit torque (SOT) acting on the magnetization. In this paper we report
the observation of the optical counterpart of SOT. At picosecond time-scales,
we detect excitations of magnetization of a ferromagnetic semiconductor
(Ga,Mn)As which are independent of the polarization of the pump laser pulses
and are induced by non-equilibrium spin-orbit coupled photo-holes.Comment: 4 figure, supplementary information. arXiv admin note: text overlap
with arXiv:1101.104
Impact of AFM-induced nano-pits in a-Si:H films on silicon crystal growth
Conductive tips in atomic force microscopy (AFM) can be used to localize field-enhanced metal-induced solid-phase crystallization (FE-MISPC) of amorphous silicon (a-Si:H) at room temperature down to nanoscale dimensions. In this article, the authors show that such local modifications can be used to selectively induce further localized growth of silicon nanocrystals. First, a-Si:H films by plasma-enhanced chemical vapor deposition on nickel/glass substrates are prepared. After the FE-MISPC process, yielding both conductive and non-conductive nano-pits in the films, the second silicon layer at the boundary condition of amorphous and microcrystalline growth is deposited. Comparing AFM morphology and current-sensing AFM data on the first and second layers, it is observed that the second deposition changes the morphology and increases the local conductivity of FE-MISPC-induced pits by up to an order of magnitude irrespective of their prior conductivity. This is attributed to the silicon nanocrystals (<100 nm) that tend to nucleate and grow inside the pits. This is also supported by micro-Raman spectroscopy
- …