225 research outputs found
LES NOYAUX DE TRANSITION 189Ir ET 187Ir SONT-ILS TRIAXIAUX ?
Les niveaux excités des noyaux 189Ir et 187Ir ont été étudiés par réaction (α, 2nγ) sur le faisceau du cyclotron de Grenoble. Les schémas détaillés qui ont été établis mettent en évidence : 1) des états de parité positive qui s'interprètent comme appartenant aux deux bandes 3/2+ | 402 | (fondamental) et 1/2+ | 400 | mélangées par interaction de Coriolis (noyaux a symétrie axiale de déformation positive) ; 2) une bande découplée construite sur un état 9/2- (h 9/2) décrite de manière équivalente par un modèle à symétrie axiale et déformation positive ou par un modèle a particule-plus-rotor asymétrique ; 3) une structure complexe pour les niveaux de parité négative associés à l'isomère 11/2- (h 11/2). Ce système est correctement prédit par le modèle à rotor asymétrique
The Glial Regenerative Response to Central Nervous System Injury Is Enabled by Pros-Notch and Pros-NFκB Feedback
Organisms are structurally robust, as cells accommodate changes preserving structural integrity and function. The molecular mechanisms underlying structural robustness and plasticity are poorly understood, but can be investigated by probing how cells respond to injury. Injury to the CNS induces proliferation of enwrapping glia, leading to axonal re-enwrapment and partial functional recovery. This glial regenerative response is found across species, and may reflect a common underlying genetic mechanism. Here, we show that injury to the Drosophila larval CNS induces glial proliferation, and we uncover a gene network controlling this response. It consists of the mutual maintenance between the cell cycle inhibitor Prospero (Pros) and the cell cycle activators Notch and NFκB. Together they maintain glia in the brink of dividing, they enable glial proliferation following injury, and subsequently they exert negative feedback on cell division restoring cell cycle arrest. Pros also promotes glial differentiation, resolving vacuolization, enabling debris clearance and axonal enwrapment. Disruption of this gene network prevents repair and induces tumourigenesis. Using wound area measurements across genotypes and time-lapse recordings we show that when glial proliferation and glial differentiation are abolished, both the size of the glial wound and neuropile vacuolization increase. When glial proliferation and differentiation are enabled, glial wound size decreases and injury-induced apoptosis and vacuolization are prevented. The uncovered gene network promotes regeneration of the glial lesion and neuropile repair. In the unharmed animal, it is most likely a homeostatic mechanism for structural robustness. This gene network may be of relevance to mammalian glia to promote repair upon CNS injury or disease
Mapping an atlas of tissue-specific drosophila melanogaster metabolomes by high resolution mass spectrometry
Metabolomics can provide exciting insights into organismal function, but most work on simple models has focussed on the whole organism metabolome, so missing the contributions of individual tissues. Comprehensive metabolite profiles for ten tissues from adult Drosophila melanogaster were obtained here by two chromatographic methods, a hydrophilic interaction (HILIC) method for polar metabolites and a lipid profiling method also based on HILIC, in combination with an Orbitrap Exactive instrument. Two hundred and forty two polar metabolites were putatively identified in the various tissues, and 251 lipids were observed in positive ion mode and 61 in negative ion mode. Although many metabolites were detected in all tissues, every tissue showed characteristically abundant metabolites which could be rationalised against specific tissue functions. For example, the cuticle contained high levels of glutathione, reflecting a role in oxidative defence; the alimentary canal (like vertebrate gut) had high levels of acylcarnitines for fatty acid metabolism, and the head contained high levels of ether lipids. The male accessory gland uniquely contained decarboxylated S-adenosylmethionine. These data thus both provide valuable insights into tissue function, and a reference baseline, compatible with the FlyAtlas.org transcriptomic resource, for further metabolomic analysis of this important model organism, for example in the modelling of human inborn errors of metabolism, aging or metabolic imbalances such as diabetes
3D imaging of colorectal cancer organoids identifies responses to Tankyrase inhibitors
Aberrant activation of the Wnt signalling pathway is required for tumour initiation and survival in the majority of colorectal cancers. The development of inhibitors of Wnt signalling has been the focus of multiple drug discovery programs targeting colorectal cancer and other malignancies associated with aberrant pathway activation. However, progression of new clinical entities targeting the Wnt pathway has been slow. One challenge lies with the limited predictive power of 2D cancer cell lines because they fail to fully recapitulate intratumoural phenotypic heterogeneity. In particular, the relationship between 2D cancer cell biology and cancer stem cell function is poorly understood. By contrast, 3D tumour organoids provide a platform in which complex cell-cell interactions can be studied. However, complex 3D models provide a challenging platform for the quantitative analysis of drug responses of therapies that have differential effects on tumour cell subpopulations. Here, we generated tumour organoids from colorectal cancer patients and tested their responses to inhibitors of Tankyrase (TNKSi) which are known to modulate Wnt signalling. Using compounds with 3 orders of magnitude difference in cellular mechanistic potency together with image-based assays, we demonstrate that morphometric analyses can capture subtle alterations in organoid responses to Wnt inhibitors that are consistent with activity against a cancer stem cell subpopulation. Overall our study highlights the value of phenotypic readouts as a quantitative method to asses drug-induced effects in a relevant preclinical model
Understanding Animal Group-Size Distributions
One of the most striking aspects of animal groups is their remarkable variation in size, both within and between species. While a number of mechanistic models have been proposed to explain this variation, there are few comprehensive datasets against which these models have been tested. In particular, we only vaguely understand how environmental factors and behavioral activities affect group-size distributions. Here we use observations of House sparrows (Passer domesticus) to investigate the factors determining group-size distribution. Over a wide range of conditions, we observed that animal group sizes followed a single parameter distribution known as the logarithmic distribution. This single parameter is the mean group size experienced by a randomly chosen individual (including the individual itself). For sparrows, the experienced mean group size, and hence the distribution, was affected by four factors: morning temperature, place, behavior and the degree of food spillage. Our results further indicate that the sparrows regulate the mean group size they experience, either by groups splitting more or merging less when local densities are high. We suggest that the mean experienced group size provides a simple but general tool for assessing the ecology and evolution of grouping
Recommended from our members
Using Network Dynamical Influence to Drive Consensus
Consensus and decision-making are often analysed in the context of networks, with many studies focusing attention on ranking the nodes of a network depending on their relative importance to information routing. Dynamical influence ranks the nodes with respect to their ability to influence the evolution of the associated network dynamical system. In this study it is shown that dynamical influence not only ranks the nodes, but also provides a naturally optimised distribution of effort to steer a network from one state to another. An example is provided where the "steering" refers to the physical change in velocity of self-propelled agents interacting through a network. Distinct from other works on this subject, this study looks at directed and hence more general graphs. The findings are presented with a theoretical angle, without targeting particular applications or networked systems; however, the framework and results offer parallels with biological flocks and swarms and opportunities for design of technological networks
Self-Assemblage and Quorum in the Earthworm Eisenia fetida (Oligochaete, Lumbricidae)
Despite their ubiquity and ecological significance in temperate ecosystems, the behavioural ecology of earthworms is not well described. This study examines the mechanisms that govern aggregation behaviour specially the tendency of individuals to leave or join groups in the compost earthworm Eisenia fetida, a species with considerable economic importance, especially in waste management applications. Through behavioural assays combined with mathematical modelling, we provide the first evidence of self-assembled social structures in earthworms and describe key mechanisms involved in cluster formation. We found that the probability of an individual joining a group increased with group size, while the probability of leaving decreased. Moreover, attraction to groups located at a distance was observed, suggesting a role for volatile cues in cluster formation. The size of earthworm clusters appears to be a key factor determining the stability of the group. These findings enhance our understanding of intra-specific interactions in earthworms and have potential implications for extraction and collection of earthworms in vermicomposting processes
How to Join a Wave: Decision-Making Processes in Shimmering Behavior of Giant Honeybees (Apis dorsata)
Shimmering is a collective defence behaviour in Giant honeybees (Apis dorsata) whereby individual bees flip their abdomen upwards, producing Mexican wave-like patterns on the nest surface. Bucket bridging has been used to explain the spread of information in a chain of members including three testable concepts: first, linearity assumes that individual “agent bees” that participate in the wave will be affected preferentially from the side of wave origin. The directed-trigger hypothesis addresses the coincidence of the individual property of trigger direction with the collective property of wave direction. Second, continuity describes the transfer of information without being stopped, delayed or re-routed. The active-neighbours hypothesis assumes coincidence between the direction of the majority of shimmering-active neighbours and the trigger direction of the agents. Third, the graduality hypothesis refers to the interaction between an agent and her active neighbours, assuming a proportional relationship in the strength of abdomen flipping of the agent and her previously active neighbours. Shimmering waves provoked by dummy wasps were recorded with high-resolution video cameras. Individual bees were identified by 3D-image analysis, and their strength of abdominal flipping was assessed by pixel-based luminance changes in sequential frames. For each agent, the directedness of wave propagation was based on wave direction, trigger direction, and the direction of the majority of shimmering-active neighbours. The data supported the bucket bridging hypothesis, but only for a small proportion of agents: linearity was confirmed for 2.5%, continuity for 11.3% and graduality for 0.4% of surface bees (but in 2.6% of those agents with high wave-strength levels). The complimentary part of 90% of surface bees did not conform to bucket bridging. This fuzziness is discussed in terms of self-organisation and evolutionary adaptedness in Giant honeybee colonies to respond to rapidly changing threats such as predatory wasps scanning in front of the nest
Reduction in Predator Defense in the Presence of Neighbors in a Colonial Fish
Predation pressure has long been considered a leading explanation of colonies, where close neighbors may reduce predation via dilution, alarming or group predator attacks. Attacking predators may be costly in terms of energy and survival, leading to the question of how neighbors contribute to predator deterrence in relationship to each other. Two hypotheses explaining the relative efforts made by neighbors are byproduct-mutualism, which occurs when breeders inadvertently attack predators by defending their nests, and reciprocity, which occurs when breeders deliberately exchange predator defense efforts with neighbors. Most studies investigating group nest defense have been performed with birds. However, colonial fish may constitute a more practical model system for an experimental approach because of the greater ability of researchers to manipulate their environment. We investigated in the colonial fish, Neolamprologus caudopunctatus, whether prospecting pairs preferred to breed near conspecifics or solitarily, and how breeders invested in anti-predator defense in relation to neighbors. In a simple choice test, prospecting pairs selected breeding sites close to neighbors versus a solitary site. Predators were then sequentially presented to the newly established test pairs, the previously established stimulus pairs or in between the two pairs. Test pairs attacked the predator eight times more frequently when they were presented on their non-neighbor side compared to between the two breeding sites, where stimulus pairs maintained high attack rates. Thus, by joining an established pair, test pairs were able to reduce their anti-predator efforts near neighbors, at no apparent cost to the stimulus pairs. These findings are unlikely to be explained by reciprocity or byproduct-mutualism. Our results instead suggest a commensal relationship in which new pairs exploit the high anti-predator efforts of established pairs, which invest similarly with or without neighbors. Further studies are needed to determine the scope of commensalism as an anti-predator strategy in colonial animals
- …