8 research outputs found

    Two-vibron bound states in alpha-helix proteins : the interplay between the intramolecular anharmonicity and the strong vibron-phonon coupling

    Full text link
    The influence of the intramolecular anharmonicity and the strong vibron-phonon coupling on the two-vibron dynamics in an α\alpha-helix protein is studied within a modified Davydov model. The intramolecular anharmonicity of each amide-I vibration is considered and the vibron dynamics is described according to the small polaron approach. A unitary transformation is performed to remove the intramolecular anharmonicity and a modified Lang-Firsov transformation is applied to renormalize the vibron-phonon interaction. Then, a mean field procedure is realized to obtain the dressed anharmonic vibron Hamiltonian. It is shown that the anharmonicity modifies the vibron-phonon interaction which results in an enhancement of the dressing effect. In addition, both the anharmonicity and the dressing favor the occurrence of two different bound states which the properties strongly depend on the interplay between the anharmonicity and the dressing. Such a dependence was summarized in a phase diagram which characterizes the number and the nature of the bound states as a function of the relevant parameters of the problem. For a significant anharmonicity, the low frequency bound states describe two vibrons trapped onto the same amide-I vibration whereas the high frequency bound states refer to the trapping of the two vibrons onto nearest neighbor amide-I vibrations.Comment: may 2003 submitted to Phys. Rev.

    Relaxation channels of two-vibron bound states in \alpha-helix proteins

    Full text link
    Relaxation channels for two-vibron bound states in an anharmonic alpha-helix protein are studied. It is pointed out that the relaxation originates in the interaction between the dressed anharmonic vibrons and the remaining phonons. This interaction is responsible for the occurrence of transitions between two-vibron eigenstates mediated by both phonon absorption and phonon emission. At biological temperature, it is shown that the relaxation rate does not significantly depends on the nature of the two-vibron state involved in the process. Therefore, the lifetime for both bound and free states is of the same order of magnitude and ranges between 0.1 and 1.0 ps for realistic parameters. By contrast, the relaxation channels strongly depend on the nature of the two-vibron states which is a consequence of the breather-like behavior of the two-vibron bound states.Comment: octobre 2003 - soumis Phys. Rev.

    Lattice Boltzmann Method Implementation on Multiple Devices using OpenCL

    No full text
    Scientific computing community has been in close connection with high performance computing (HPC), which has been privilege of a limited group of scientists. Recently, with rapid development of Graphics Processing Units (GPUs), the parallel processing power of high performance computers has been brought up to every commodity desktop computer, reducing cost of scientific computations. In this paper, we develop a general purpose Lattice Boltzmann code that runs on commodity computer with multiple heterogeneous devices that support OpenCL specification. Different approaches to Lattice Boltzmann code implementations on commodity computer with multiple devices were explored. Simulation results for different code implementations on multiple devices have been compared to each other, to results obtained for single device implementation and with results from the literature. Simulation results for the commodity computer hardware platforms with multiple devices implementation have showed significant speed improvement compared to simulation implemented on single device

    Implementation of the Lattice Boltzmann Method on Heterogeneous Hardware and Platforms using OpenCL

    No full text
    The Lattice Boltzmann method (LBM) has become an alternative method for computational fluid dynamics with a wide range of applications. Besides its numerical stability and accuracy, one of the major advantages of LBM is its relatively easy parallelization and, hence, it is especially well fitted to many-core hardware as graphics processing units (GPU). The majority of work concerning LBM implementation on GPU's has used the CUDA programming model, supported exclusively by NVIDIA. Recently, the open standard for parallel programming of heterogeneous systems (OpenCL) has been introduced. OpenCL standard matures and is supported on processors from most vendors. In this paper, we make use of the OpenCL framework for the lattice Boltzmann method simulation, using hardware accelerators - AMD ATI Radeon GPU, AMD Dual-Core CPU and NVIDIA GeForce GPU's. Application has been developed using a combination of Java and OpenCL programming languages. Java bindings for OpenCL have been utilized. This approach offers the benefits of hardware and operating system independence, as well as speeding up of lattice Boltzmann algorithm. It has been showed that the developed lattice Boltzmann source code can be executed without modification on all of the used hardware accelerators. Performance results have been presented and compared for the hardware accelerators that have been utilized
    corecore