Relaxation channels for two-vibron bound states in an anharmonic alpha-helix
protein are studied. It is pointed out that the relaxation originates in the
interaction between the dressed anharmonic vibrons and the remaining phonons.
This interaction is responsible for the occurrence of transitions between
two-vibron eigenstates mediated by both phonon absorption and phonon emission.
At biological temperature, it is shown that the relaxation rate does not
significantly depends on the nature of the two-vibron state involved in the
process. Therefore, the lifetime for both bound and free states is of the same
order of magnitude and ranges between 0.1 and 1.0 ps for realistic parameters.
By contrast, the relaxation channels strongly depend on the nature of the
two-vibron states which is a consequence of the breather-like behavior of the
two-vibron bound states.Comment: octobre 2003 - soumis Phys. Rev.