18,263 research outputs found

    Hierarchical Bayesian Modeling of Hitting Performance in Baseball

    Full text link
    We have developed a sophisticated statistical model for predicting the hitting performance of Major League baseball players. The Bayesian paradigm provides a principled method for balancing past performance with crucial covariates, such as player age and position. We share information across time and across players by using mixture distributions to control shrinkage for improved accuracy. We compare the performance of our model to current sabermetric methods on a held-out season (2006), and discuss both successes and limitations

    Was the Universe Reionized by Massive Population-III Stars?

    Full text link
    The WMAP satellite has measured a large optical depth to electron scattering after cosmological recombination of 0.17+-0.04, implying significant reionization of the primordial gas only ~200 million years after the big bang. However, the most recent overlap of intergalactic HII regions must have occured at z<9 based on the Lyman-alpha forest constraint on the thermal history of the intergalactic medium. Here we argue that a first generation of metal-free stars with a heavy (rather than Salpeter) mass function is therefore required to account for much of the inferred optical depth. This conclusion holds if feedback regulates star formation in early dwarf galaxies as observed in present-day dwarfs.Comment: 4 pages, 1 figure, replaced to match version accepted by ApJ Letter

    Correlations of a bound interface over a random substrate

    Full text link
    The correlation function of a one-dimensional interface over a random substrate, bound to the substrate by a pressure term, is studied by Monte-Carlo simulation. It is found that the height correlation , averaged over the substrate disorder, fits a form exp(-(j/b)^c) to a surprising precision in the full range of j where the correlation is non-negligible. The exponent c increases from 1.0 to 1.5 when the interface tension is taken larger and larger.Comment: 7 pages, 5 figure

    Apparent first-order wetting and anomalous scaling in the two-dimensional Ising model

    Get PDF
    The global phase diagram of wetting in the two-dimensional (2d) Ising model is obtained through exact calculation of the surface excess free energy. Besides a surface field for inducing wetting, a surface-coupling enhancement is included. The wetting transition is critical (second order) for any finite ratio of surface coupling J_s to bulk coupling J, and turns first order in the limit J_s/J to infinity. However, for J_s/J much larger than 1 the critical region is exponentially small and practically invisible to numerical studies. A distinct pre-asymptotic regime exists in which the transition displays first-order character. Surprisingly, in this regime the surface susceptibility and surface specific heat develop a divergence and show anomalous scaling with an exponent equal to 3/2.Comment: This new version presents the exact solution and its properties whereas the older version was based on an approximate numerical study of the mode

    Non-equilibrium Dynamics of Finite Interfaces

    Full text link
    We present an exact solution to an interface model representing the dynamics of a domain wall in a two-phase Ising system. The model is microscopically motivated, yet we find that in the scaling regime our results are consistent with those obtained previously from a phenomenological, coarse-grained Langevin approach.Comment: 12 pages LATEX (figures available on request), Oxford preprint OUTP-94-07

    The Eastern and Western “Scriptures” for Postmodernity: toward a Unified Ethos in Religion, Science, and Philosophy

    Get PDF
    Postmodernism underscores the impossibility of discovering any truth. One can at best only construct a truth capable of ensuring optimal wellbeing for everyone. The traditional undifferentiated efforts of science, religion, and philosophy, which became compartmentalized in the Enlightenment, are again streamlined in postmodernity. A new ethics is the point of convergence for these three disciplines to fashion a sustainable universe. Yet Nagarjuna, who has long been overlooked, advocates a passage beyond language. It is an initiative that finds resonance in some postmodern masters as well

    Solving for Micro- and Macro- Scale Electrostatic Configurations Using the Robin Hood Algorithm

    Get PDF
    We present a novel technique by which highly-segmented electrostatic configurations can be solved. The Robin Hood method is a matrix-inversion algorithm optimized for solving high density boundary element method (BEM) problems. We illustrate the capabilities of this solver by studying two distinct geometry scales: (a) the electrostatic potential of a large volume beta-detector and (b) the field enhancement present at surface of electrode nano-structures. Geometries with elements numbering in the O(10^5) are easily modeled and solved without loss of accuracy. The technique has recently been expanded so as to include dielectrics and magnetic materials.Comment: 40 pages, 20 figure

    Lorentz Violation for Photons and Ultra-High Energy Cosmic Rays

    Full text link
    Lorentz symmetry breaking at very high energies may lead to photon dispersion relations of the form omega^2=k^2+xi_n k^2(k/M_Pl)^n with new terms suppressed by a power n of the Planck mass M_Pl. We show that first and second order terms of size xi_1 > 10^(-14) and xi_2 < -10^(-6), respectively, would lead to a photon component in cosmic rays above 10^(19) eV that should already have been detected, if corresponding terms for electrons and positrons are significantly smaller. This suggests that Lorentz invariance breakings suppressed up to second order in the Planck scale are unlikely to be phenomenologically viable for photons.Comment: 4 revtex pages, 3 postscript figures included, version published in PR

    Cosmological Origin of the Stellar Velocity Dispersions in Massive Early-Type Galaxies

    Full text link
    We show that the observed upper bound on the line-of-sight velocity dispersion of the stars in an early-type galaxy, sigma<400km/s, may have a simple dynamical origin within the LCDM cosmological model, under two main hypotheses. The first is that most of the stars now in the luminous parts of a giant elliptical formed at redshift z>6. Subsequently, the stars behaved dynamically just as an additional component of the dark matter. The second hypothesis is that the mass distribution characteristic of a newly formed dark matter halo forgets such details of the initial conditions as the stellar "collisionless matter" that was added to the dense parts of earlier generations of halos. We also assume that the stellar velocity dispersion does not evolve much at z<6, because a massive host halo grows mainly by the addition of material at large radii well away from the stellar core of the galaxy. These assumptions lead to a predicted number density of ellipticals as a function of stellar velocity dispersion that is in promising agreement with the Sloan Digital Sky Survey data.Comment: ApJ, in press (2003); matches published versio
    • …
    corecore