115 research outputs found

    Random data Cauchy theory for supercritical wave equations II : A global existence result

    Full text link
    We prove that the subquartic wave equation on the three dimensional ball Θ\Theta, with Dirichlet boundary conditions admits global strong solutions for a large set of random supercritical initial data in s<1/2Hs(Θ)\cap_{s<1/2} H^s(\Theta). We obtain this result as a consequence of a general random data Cauchy theory for supercritical wave equations developed in our previous work \cite{BT2} and invariant measure considerations which allow us to obtain also precise large time dynamical informations on our solutions

    Continuations of the nonlinear Schr\"odinger equation beyond the singularity

    Full text link
    We present four continuations of the critical nonlinear \schro equation (NLS) beyond the singularity: 1) a sub-threshold power continuation, 2) a shrinking-hole continuation for ring-type solutions, 3) a vanishing nonlinear-damping continuation, and 4) a complex Ginzburg-Landau (CGL) continuation. Using asymptotic analysis, we explicitly calculate the limiting solutions beyond the singularity. These calculations show that for generic initial data that leads to a loglog collapse, the sub-threshold power limit is a Bourgain-Wang solution, both before and after the singularity, and the vanishing nonlinear-damping and CGL limits are a loglog solution before the singularity, and have an infinite-velocity{\rev{expanding core}} after the singularity. Our results suggest that all NLS continuations share the universal feature that after the singularity time TcT_c, the phase of the singular core is only determined up to multiplication by eiθe^{i\theta}. As a result, interactions between post-collapse beams (filaments) become chaotic. We also show that when the continuation model leads to a point singularity and preserves the NLS invariance under the transformation ttt\rightarrow-t and ψψ\psi\rightarrow\psi^\ast, the singular core of the weak solution is symmetric with respect to TcT_c. Therefore, the sub-threshold power and the{\rev{shrinking}}-hole continuations are symmetric with respect to TcT_c, but continuations which are based on perturbations of the NLS equation are generically asymmetric

    Ring-type singular solutions of the biharmonic nonlinear Schrodinger equation

    Full text link
    We present new singular solutions of the biharmonic nonlinear Schrodinger equation in dimension d and nonlinearity exponent 2\sigma+1. These solutions collapse with the quasi self-similar ring profile, with ring width L(t) that vanishes at singularity, and radius proportional to L^\alpha, where \alpha=(4-\sigma)/(\sigma(d-1)). The blowup rate of these solutions is 1/(3+\alpha) for 4/d\le\sigma<4, and slightly faster than 1/4 for \sigma=4. These solutions are analogous to the ring-type solutions of the nonlinear Schrodinger equation.Comment: 21 pages, 13 figures, research articl

    Stable self similar blow up dynamics for slightly L^2 supercritical NLS equations

    Full text link
    We consider the focusing nonlinear Schr\"odinger equations itu+Δu+uup1=0i\partial_t u+\Delta u +u|u|^{p-1}=0 in dimension 1N51\leq N\leq 5 and for slightly L2L^2 supercritical nonlinearities p_c with pc=1+4Np_c=1+\frac{4}{N} and 0<\e\ll 1. We prove the existence and stability in the energy space H1H^1 of a self similar finite time blow up dynamics and provide a qualitative description of the singularity formation near the blow up tim

    Absorbing boundary conditions for the Westervelt equation

    Full text link
    The focus of this work is on the construction of a family of nonlinear absorbing boundary conditions for the Westervelt equation in one and two space dimensions. The principal ingredient used in the design of such conditions is pseudo-differential calculus. This approach enables to develop high order boundary conditions in a consistent way which are typically more accurate than their low order analogs. Under the hypothesis of small initial data, we establish local well-posedness for the Westervelt equation with the absorbing boundary conditions. The performed numerical experiments illustrate the efficiency of the proposed boundary conditions for different regimes of wave propagation

    Enhanced Pulse Propagation in Non-Linear Arrays of Oscillators

    Get PDF
    The propagation of a pulse in a nonlinear array of oscillators is influenced by the nature of the array and by its coupling to a thermal environment. For example, in some arrays a pulse can be speeded up while in others a pulse can be slowed down by raising the temperature. We begin by showing that an energy pulse (1D) or energy front (2D) travels more rapidly and remains more localized over greater distances in an isolated array (microcanonical) of hard springs than in a harmonic array or in a soft-springed array. Increasing the pulse amplitude causes it to speed up in a hard chain, leaves the pulse speed unchanged in a harmonic system, and slows down the pulse in a soft chain. Connection of each site to a thermal environment (canonical) affects these results very differently in each type of array. In a hard chain the dissipative forces slow down the pulse while raising the temperature speeds it up. In a soft chain the opposite occurs: the dissipative forces actually speed up the pulse while raising the temperature slows it down. In a harmonic chain neither dissipation nor temperature changes affect the pulse speed. These and other results are explained on the basis of the frequency vs energy relations in the various arrays

    The historical origins of corruption in the developing world: a comparative analysis of East Asia

    Get PDF
    A new approach has emerged in the literature on corruption in the developing world that breaks with the assumption that corruption is driven by individualistic self-interest and, instead, conceptualizes corruption as an informal system of norms and practices. While this emerging neo-institutionalist approach has done much to further our understanding of corruption in the developing world, one key question has received relatively little attention: how do we explain differences in the institutionalization of corruption between developing countries? The paper here addresses this question through a systematic comparison of seven developing and newly industrialized countries in East Asia. The argument that emerges through this analysis is that historical sequencing mattered: countries in which the "political marketplace" had gone through a process of concentration before universal suffrage was introduced are now marked by less harmful types of corruption than countries where mass voting rights where rolled out in a context of fragmented political marketplaces. The paper concludes by demonstrating that this argument can be generalized to the developing world as a whole
    corecore