102 research outputs found

    Widespread sensorimotor and frontal cortical atrophy in Amyotrophic Lateral Sclerosis

    Get PDF
    BACKGROUND: Widespread cortical atrophy in Amyotrophic Lateral Sclerosis (ALS) has been described in neuropathological studies. The presence of cortical atrophy in conventional and scientific neuroimaging has been a matter of debate. In studies using computertomography, positron emission tomography, proton magnetic resonance spectroscopy and conventional T2-weighted and proton-weighted images, results have been variable. Recent morphometric studies by magnetic resonance imaging have produced conflicting results regarding the extent of grey and white matter involvement in ALS patients. METHODS: The authors used optimized voxel-based morphometry as an unbiased whole brain approach to detect differences between regional grey and white matter volumes. Seventeen patients with a diagnosis of ALS according to El-Escorial criteria and seventeen age-matched controls received a high resolution anatomical T1 scan. RESULTS: In ALS patients regional grey matter volume (GMV) reductions were found in the pre- and postcentral gyrus bilaterally which extended to premotor, parietal and frontal regions bilaterally compared with controls (p < 0.05, corrected for the entire volume). The revised ALS functional rating scale showed a positive correlation with GMV reduction of the right medial frontal gyrus corresponding to the dorsolateral prefrontal cortex. No significant differences were found for white matter volumes or when grey and white matter density images were investigated. There were no further correlations with clinical variables found. CONCLUSION: In ALS patients, primary sensorimotor cortex atrophy can be regarded as a prominent feature of the disease. Supporting the concept of ALS being a multisytem disorder, our study provides further evidence for extramotor involvement which is widespread. The lack of correlation with common clinical variables probably reflects the fact that heterogeneous disease processes underlie ALS. The discrepancy within all published morphometric studies in ALS so far may be related to differences in patient cohorts and several methodological factors of the data analysis process. Longitudinal studies are required to further clarify the time course and distribution of grey and white matter pathology during the course of ALS

    Protein Expression Redirects Vesicular Stomatitis Virus RNA Synthesis to Cytoplasmic Inclusions

    Get PDF
    Positive-strand and double-strand RNA viruses typically compartmentalize their replication machinery in infected cells. This is thought to shield viral RNA from detection by innate immune sensors and favor RNA synthesis. The picture for the non-segmented negative-strand (NNS) RNA viruses, however, is less clear. Working with vesicular stomatitis virus (VSV), a prototype of the NNS RNA viruses, we examined the location of the viral replication machinery and RNA synthesis in cells. By short-term labeling of viral RNA with 5′-bromouridine 5′-triphosphate (BrUTP), we demonstrate that primary mRNA synthesis occurs throughout the host cell cytoplasm. Protein synthesis results in the formation of inclusions that contain the viral RNA synthesis machinery and become the predominant sites of mRNA synthesis in the cell. Disruption of the microtubule network by treatment of cells with nocodazole leads to the accumulation of viral mRNA in discrete structures that decorate the surface of the inclusions. By pulse-chase analysis of the mRNA, we find that viral transcripts synthesized at the inclusions are transported away from the inclusions in a microtubule-dependent manner. Metabolic labeling of viral proteins revealed that inhibiting this transport step diminished the rate of translation. Collectively those data suggest that microtubule-dependent transport of viral mRNAs from inclusions facilitates their translation. Our experiments also show that during a VSV infection, protein synthesis is required to redirect viral RNA synthesis to intracytoplasmic inclusions. As viral RNA synthesis is initially unrestricted, we speculate that its subsequent confinement to inclusions might reflect a cellular response to infection

    Three-Dimensional Analysis of a Viral RNA Replication Complex Reveals a Virus-Induced Mini-Organelle

    Get PDF
    Positive-strand RNA viruses are the largest genetic class of viruses and include many serious human pathogens. All positive-strand RNA viruses replicate their genomes in association with intracellular membrane rearrangements such as single- or double-membrane vesicles. However, the exact sites of RNA synthesis and crucial topological relationships between relevant membranes, vesicle interiors, surrounding lumens, and cytoplasm generally are poorly defined. We applied electron microscope tomography and complementary approaches to flock house virus (FHV)–infected Drosophila cells to provide the first 3-D analysis of such replication complexes. The sole FHV RNA replication factor, protein A, and FHV-specific 5-bromouridine 5'-triphosphate incorporation localized between inner and outer mitochondrial membranes inside ∼50-nm vesicles (spherules), which thus are FHV-induced compartments for viral RNA synthesis. All such FHV spherules were outer mitochondrial membrane invaginations with interiors connected to the cytoplasm by a necked channel of ∼10-nm diameter, which is sufficient for ribonucleotide import and product RNA export. Tomographic, biochemical, and other results imply that FHV spherules contain, on average, three RNA replication intermediates and an interior shell of ∼100 membrane-spanning, self-interacting protein As. The results identify spherules as the site of protein A and nascent RNA accumulation and define spherule topology, dimensions, and stoichiometry to reveal the nature and many details of the organization and function of the FHV RNA replication complex. The resulting insights appear relevant to many other positive-strand RNA viruses and support recently proposed structural and likely evolutionary parallels with retrovirus and double-stranded RNA virus virions

    Deletion Mutants of VPg Reveal New Cytopathology Determinants in a Picornavirus

    Get PDF
    BACKGROUND: Success of a viral infection requires that each infected cell delivers a sufficient number of infectious particles to allow new rounds of infection. In picornaviruses, viral replication is initiated by the viral polymerase and a viral-coded protein, termed VPg, that primes RNA synthesis. Foot-and-mouth disease virus (FMDV) is exceptional among picornaviruses in that its genome encodes 3 copies of VPg. Why FMDV encodes three VPgs is unknown. METHODOLOGY AND PRINCIPAL FINDINGS: we have constructed four mutant FMDVS that encode only one VPG: either VPg(1), VPg(3), or two chimeric versions containing part of VPg(1) and VPg(3). All mutants, except that encoding only VPg(1), were replication-competent. Unexpectedly, despite being replication-competent, the mutants did not form plaques on BHK-21 cell monolayers. The one-VPg mutant FMDVs released lower amounts of encapsidated viral RNA to the extracellular environment than wild type FMDV, suggesting that deficient plaque formation was associated with insufficient release of infectious progeny. Mutant FMDVs subjected to serial passages in BHK-21 cells regained plaque-forming capacity without modification of the number of copies of VPg. Substitutions in non-structural proteins 2C, 3A and VPg were associated with restoration of plaque formation. Specifically, replacement R55W in 2C was repeatedly found in several mutant viruses that had regained competence in plaque development. The effect of R55W in 2C was to mediate an increase in the extracellular viral RNA release without a detectable increase of total viral RNA that correlated with an enhanced capacity to alter and detach BHK-21 cells from the monolayer, the first stage of cell killing. CONCLUSIONS: The results link the VPg copies in the FMDV genome with the cytopathology capacity of the virus, and have unveiled yet another function of 2C: modulation of picornavirus cell-to-cell transmission. Implications for picornaviruses pathogenesis are discussed

    Early detection and longitudinal changes in amyotrophic lateral sclerosis by 1H MRSI

    No full text
    OBJECTIVE: To determine 1) the reproducibility of metabolite measurements by (1)H MRS in the motor cortex; 2) the extent to which (1)H MRS imaging (MRSI) detects abnormal concentrations of N-acetylaspartate (NAA)-, choline (Cho)-, and creatine (Cre)-containing compounds in early stages of ALS; and 3) the metabolite changes over time in ALS. METHODS: Sixteen patients with definite or probable ALS, 12 with possible or suspected ALS, and 12 healthy controls underwent structural MRI and multislice (1)H MRSI. (1)H MRSI data were coregistered with tissue-segmented MRI data to obtain concentrations of NAA, Cre, and Cho in the left and right motor cortex and in gray matter and white matter of nonmotor regions in the brain. RESULTS: The interclass correlation coefficient of NAA was 0.53 in the motor cortex tissue and 0.83 in nonmotor cortex tissue. When cross-sectional data for patients were compared with those for controls, the NAA/(Cre + Cho) ratio in the motor cortex region was significantly reduced, primarily due to increases in Cre and Cho and a decrease in NAA concentrations. A similar, although not significant, trend of increased Cho and Cre and reduced NAA levels was also observed for patients with possible or suspected ALS. Furthermore, in longitudinal studies, decreases in NAA, Cre, and Cho concentrations were detected in motor cortex but not in nonmotor regions in ALS. CONCLUSION: Metabolite changes measured by (1)H MRSI may provide a surrogate marker of ALS that can aid detection of early disease and monitor progression and treatment response

    Detection and Management of Amyloid-Related Imaging Abnormalities in Patients with Alzheimer’s Disease Treated with Anti-Amyloid Beta Therapy

    No full text
    Amyloid-related imaging abnormalities (ARIA) are adverse events reported in Alzheimer’s disease trials of anti-amyloid beta (Aβ) therapies. This review summarizes the existing literature on ARIA, including bapineuzumab, gantenerumab, donanemab, lecanemab, and aducanumab studies, with regard to potential risk factors, detection, and management. The pathophysiology of ARIA is unclear, but it may be related to binding of antibodies to accumulated Aβ in both the cerebral parenchyma and vasculature, resulting in loss of vessel wall integrity and increased leakage into surrounding tissues. Radiographically, ARIA-E is identified as vasogenic edema in the brain parenchyma or sulcal effusions in the leptomeninges/ sulci, while ARIA-H is hemosiderin deposits presenting as microhemorrhages or superficial siderosis. ARIA tends to be transient and asymptomatic in most cases, typically occurring early in the course of treatment, with the risk decreasing later in treatment. Limited data are available on continued dosing following radiographic findings of ARIA; hence, in the event of ARIA, treatment should be continued with caution and regular monitoring. Clinical trials have implemented management approaches such as temporary suspension of treatment until symptoms or radiographic signs of ARIA have resolved or permanent discontinuation of treatment. ARIA largely resolves without concomitant treatment, and there are no systematic data on potential treatments for ARIA. Given the availability of an anti-Aβ therapy, ARIA monitoring will now be implemented in routine clinical practice. The simple magnetic resonance imaging sequences used in clinical trials are likely sufficient for effective detection of cases. Increased awareness and education of ARIA among clinicians and radiologists is vital
    • …
    corecore