47 research outputs found

    Simultaneous measurements of X-rays and electrons during a pulsating aurora

    Get PDF

    Intercomparison of the POES/MEPED Loss Cone Electron Fluxes With the CMIP6 Parametrization

    Get PDF
    Quantitative measurements of medium energy electron (MEE) precipitation (>40 keV) are a key to understand the total effect of particle precipitation on the atmosphere. The Medium Energy Proton and Electron Detector (MEPED) instrument on board the NOAA/Polar Orbiting Environmental Satellites (POES) has two sets of electron telescopes pointing ~0° and ~90° to the local vertical. Pitch angle anisotropy, which varies with particle energy, location, and geomagnetic activity, makes the 0° detector measurements a lower estimate of the flux of precipitating electrons. In the solar forcing recommended for Coupled Model Intercomparison Project (CMIP) 6 (v3.2) MEE precipitation is parameterized by Ap based on 0° detector measurements hence providing a general underestimate of the flux level. In order to assess the accuracy of the Ap model, we compare the modeled electron fluxes with estimates of the loss cone fluxes using both detectors in combination with electron pitch angle distributions from theory of wave‐particle interactions. The Ap model falls short in respect to reproducing the flux level and variability associated with strong geomagnetic storms (Ap > 40) as well as the duration of corotating interaction region storms causing a systematic bias within a solar cycle. As the Ap‐parameterized fluxes reach a plateau for Ap > 40, the model's ability to reflect the flux level of previous solar cycles associated with generally higher Ap values is questioned. The objective of this comparison is to understand the potential uncertainty in the energetic particle precipitation applying the CMIP6 particle energy input in order to assess its subsequent impact on the atmosphere.publishedVersio

    The effect of energetic electron precipitation on middle mesospheric night-time ozone during and after a moderate geomagnetic storm

    Get PDF
    Using a ground-based microwave radiometer at Troll Station, Antarctica (72°S, 2.5°E, L = 4.76), we have observed a decrease of 20–70% in the mesospheric ozone, coincident with increased nitric oxide, between 60 km and 75 km altitude associated with energetic electron precipitation (E > 30 keV) during a moderate geomagnetic storm (minimum Dst of −79 nT) in late July 2009. NOAA satellite data were used to identify the precipitating particles and to characterize their energy, spatial distribution and temporal variation over Antarctica during this isolated storm. Both the ozone decrease and nitric oxide increase initiate with the onset of the storm, and persist for several days after the precipitation ends, descending in the downward flow of the polar vortex. These combined data present a unique case study of the temporal and spatial morphology of chemical changes induced by electron precipitation during moderate geomagnetic storms, indicating that these commonplace events can cause significant effects on the middle mesospheric ozone distribution

    Are EEP Events Important for the Tertiary Ozone Maximum?

    Get PDF
    Energetic particle precipitation (EPP) increases the production of odd hydrogen (HOX ) species in the mesosphere, which catalytically destroy ozone (O3) in sunlight. Hence, the EPP‐HOX impact on the tertiary O3 maximum (TOM) depends on a complex geometry of a geographic‐oriented TOM, geomagnetic‐oriented auroral zone, producing short‐lived HOX species, and a destruction process depending on the solar zenith angle (SZA). Particle observations from the Medium Energy Proton and Electron Detectors telescopes aboard the Polar Orbiting Environmental Satellites, and hydroxyl (OH) and O3 mixing ratios from Aura microwave limb sounder (MLS) are used to investigate the potential limitations of using the MLS observations to study EPP‐OH impact on the TOM in the Northern Hemisphere. Our results show limited overlap between the auroral zone and the TOM at twilight conditions. A composite analysis indicates O3 mixing ratio decrease over the auroral zone lagged by ∼1 day compared to the maximum energetic electron precipitation (EEP)‐OH impact. Hence, MLS is predominantly observing a lagged and lower estimate of the response of O3 to EEP‐OH at SZA > 95°. The EEP impact region within the TOM is smaller than the overlap region, strongly modulated by the background atmospheric dynamics. The results, although limited by the satellites viewing conditions, imply that the importance of EEP upon O3 mixing ratio is strongly influenced by the background atmosphere, both in terms of chemistry and dynamics. Multisatellite observations at different solar local times are required to separate the direct from the lagged EEP‐OH impact on O3.publishedVersio

    Space Weather impact on the degradation of NOAA POES MEPED proton detectors

    Get PDF
    The Medium Energy Proton and Electron Detector (MEPED) on board the National Oceanic and Atmospheric Administration Polar Orbiting Environmental Satellites (NOAA POES) is known to degrade with time. In recent years a lot of effort has been put into calibrating the degraded proton detectors. We make use of previous work and show that the degradation of the detectors can be attributed to the radiation dose of each individual instrument. However, the effectiveness of the radiation in degrading the detector is modulated when it is weighted by the mean ap\textit{ap} index, increasing the degradation rate in periods with high geomagnetic activity, and decreasing it through periods of low activity. When taking ap\textit{ap} and the radiation dose into account, we find that the degradation rate is independent of spacecraft and detector pointing direction. We have developed a model to estimate the correction factor for all the MEPED detectors as a function of accumulated corrected flux and the ap\textit{ap} index. We apply the routine to NOAA POES spacecraft starting with NOAA-15, including the European satellites MetOp-02 and MetOp-01, and estimate correction factors

    Ionospheric conductances derived from satellite measurements of auroral UV and X-ray emissions, and ground-based electromagnetic data: a comparison

    No full text
    International audienceGlobal instantaneous conductance maps can be derived from remote sensing of UV and X-ray emissions by the UVI and PIXIE cameras on board the Polar satellite. Another technique called the 1-D method of characteristics provides mesoscale instantaneous conductance profiles from the MIRACLE ground-based network in Northern Scandinavia, using electric field measurements from the STARE coherent scatter radar and ground magnetometer data from the IMAGE network. The method based on UVI and PIXIE data gives conductance maps with a resolution of ~800km in space and ~4.5min in time, while the 1-D method of characteristics establishes conductances every 20s and with a spatial resolution of ~50km. In this study, we examine three periods with substorm activity in 1998 to investigate whether the two techniques converge when the results from the 1-D method of characteristics are averaged over the spatial and temporal resolution of the UVI/PIXIE data. In general, we find that the calculated conductance sets do not correlate. However, a fairly good agreement may be reached when the ionosphere is in a state that does not exhibit strong local turbulence. By defining a certain tolerance level of turbulence, we show that 14 of the 15 calculated conductance pairs during relatively uniform ionospheric conditions differ less than Âą30%. The same is true for only 4 of the 9 data points derived when the ionosphere is in a highly turbulent state. A correlation coefficient between the two conductance sets of 0.27 is derived when all the measurements are included. By removing the data points from time periods when too much ionospheric turbulence occurs, the correlation coefficient raises to 0.57. Considering the two very different techniques used in this study to derive the conductances, with different assumptions, limitations and scale sizes, our results indicate that simple averaging of mesoscale results allows a continuous transition to large-scale results. Therefore, it is possible to use a combined approach to study ionospheric events with satellite optical and ground-based electrodynamic data of different spatial and temporal resolutions. We must be careful, though, when using these two techniques during disturbed conditions. The two methods will only give results that systematically converge when relatively uniform conditions exist

    Instantaneous ionospheric global conductance maps during an isolated substorm

    No full text
    International audienceData from the Polar Ionospheric X-ray Imager (PIXIE) and the Ultraviolet Imager (UVI) on board the Polar satellite have been used to provide instantaneous global conductance maps. In this study, we focus on an isolated substorm event occurring on 31 July 1997. From the PIXIE and the UVI measurements, the energy spectrum of the precipitating electrons can be derived. By using a model of the upper atmosphere, the resulting conductivity values are generated. We present global maps of how the 5 min time-averaged height-integrated Hall and Pedersen conductivities vary every 15 min during this isolated substorm. The method presented here enables us to study the time development of the conductivities, with a spatial resolution of ~ 700 km. During the substorm, a single region of enhanced Hall conductance is observed. The Hall conductance maximum remains situated between latitudes 64 and 70 corrected geomagnetic (CGM) degrees and moves eastward. The strongest conductances are observed in the pre-midnight sector at the start of the substorm expansion. Toward the end of the substorm expansion and into the recovery phase, we find the Hall conductance maximum in the dawn region. We also observe that the Hall to Pedersen conductance ratio for the regions of maximum Hall conductance is increasing throughout the event, indicating a hardening of the electron spectrum. By combining PIXIE and UVI measurements with an assumed energy distribution, we can cover the whole electron energy range responsible for the conductances. Electrons with energies contributing most to the Pedersen conductance are well covered by UVI while PIXIE captures the high energetic component of the precipitating electrons affecting the Hall conductance. Most statistical conductance models have derived conductivities from electron precipitation data below approximately 30 keV. Since the intensity of the shortest UVI-wavelengths (LBHS) decreases significantly at higher electron energies, the UVI electron energy range is more or less comparable with the energy ranges of the statistical models. By calculating the conductivities from combined PIXIE and UVI measurements to compare with the conductivities from using UVI data only, we observe significant differences in the Hall conductance. The greatest differences are observed in the early evening and the late morning sector. We therefore suggest that the existing statistical models underestimate the Hall conductance
    corecore