203 research outputs found

    Persistence in One-dimensional Ising Models with Parallel Dynamics

    Full text link
    We study persistence in one-dimensional ferromagnetic and anti-ferromagnetic nearest-neighbor Ising models with parallel dynamics. The probability P(t) that a given spin has not flipped up to time t, when the system evolves from an initial random configuration, decays as P(t) \sim 1/t^theta_p with theta_p \simeq 0.75 numerically. A mapping to the dynamics of two decoupled A+A \to 0 models yields theta_p = 3/4 exactly. A finite size scaling analysis clarifies the nature of dynamical scaling in the distribution of persistent sites obtained under this dynamics.Comment: 5 pages Latex file, 3 postscript figures, to appear in Phys Rev.

    AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes

    Get PDF
    Using a combination of computer methods for iterative database searches and multiple sequence alignment, we show that protein sequences related to the AAA family of ATPases are far more prevalent than reported previously. Among these are regulatory components of Lon and Clp proteases, proteins involved in DNA replication, recombination, and restriction (including subunits of the origin recognition complex, replication factor C proteins, MCM DNA-licensing factors and the bacterial DnaA, RuvB, and McrB proteins), prokaryotic NtrC-related transcription regulators, the Bacillus sporulation protein SpoVJ, Mg2+, and Co2+ chelatases, the Halobacterium GvpN gas vesicle synthesis protein, dynein motor proteins, TorsinA, and Rubisco activase. Alignment of these sequences, in light of the structures of the clamp loader delta' subunit of Escherichia coli DNA polymerase III and the hexamerization component of N-ethylmaleimide-sensitive fusion protein, provides structural and mechanistic insights into these proteins, collectively designated the AAA+ class. Whole-genome analysis indicates that this class is ancient and has undergone considerable functional divergence prior to the emergence of the major divisions of life. These proteins often perform chaperone-like functions that assist in the assembly, operation, or disassembly of protein complexes. The hexameric architecture often associated with this class can provide a hole through which DNA or RNA can be thread; this may be important for assembly or remodeling of DNA-protein complexes

    Stochastic Aggregation: Rate Equations Approach

    Full text link
    We investigate a class of stochastic aggregation processes involving two types of clusters: active and passive. The mass distribution is obtained analytically for several aggregation rates. When the aggregation rate is constant, we find that the mass distribution of passive clusters decays algebraically. Furthermore, the entire range of acceptable decay exponents is possible. For aggregation rates proportional to the cluster masses, we find that gelation is suppressed. In this case, the tail of the mass distribution decays exponentially for large masses, and as a power law over an intermediate size range.Comment: 7 page

    Exact Solution of a Drop-push Model for Percolation

    Full text link
    Motivated by a computer science algorithm known as `linear probing with hashing' we study a new type of percolation model whose basic features include a sequential `dropping' of particles on a substrate followed by their transport via a `pushing' mechanism. Our exact solution in one dimension shows that, unlike the ordinary random percolation model, the drop-push model has nontrivial spatial correlations generated by the dynamics itself. The critical exponents in the drop-push model are also different from that of the ordinary percolation. The relevance of our results to computer science is pointed out.Comment: 4 pages revtex, 2 eps figure

    Dynamic Scaling in One-Dimensional Cluster-Cluster Aggregation

    Get PDF
    We study the dynamic scaling properties of an aggregation model in which particles obey both diffusive and driven ballistic dynamics. The diffusion constant and the velocity of a cluster of size ss follow D(s)sγD(s) \sim s^\gamma and v(s)sδv(s) \sim s^\delta, respectively. We determine the dynamic exponent and the phase diagram for the asymptotic aggregation behavior in one dimension in the presence of mixed dynamics. The asymptotic dynamics is dominated by the process that has the largest dynamic exponent with a crossover that is located at δ=γ1\delta = \gamma - 1. The cluster size distributions scale similarly in all cases but the scaling function depends continuously on γ\gamma and δ\delta. For the purely diffusive case the scaling function has a transition from exponential to algebraic behavior at small argument values as γ\gamma changes sign whereas in the drift dominated case the scaling function decays always exponentially.Comment: 6 pages, 6 figures, RevTeX, submitted to Phys. Rev.

    Kinetics of stochastically-gated diffusion-limited reactions and geometry of random walk trajectories

    Full text link
    In this paper we study the kinetics of diffusion-limited, pseudo-first-order A + B -> B reactions in situations in which the particles' intrinsic reactivities vary randomly in time. That is, we suppose that the particles are bearing "gates" which interchange randomly and independently of each other between two states - an active state, when the reaction may take place, and a blocked state, when the reaction is completly inhibited. We consider four different models, such that the A particle can be either mobile or immobile, gated or ungated, as well as ungated or gated B particles can be fixed at random positions or move randomly. All models are formulated on a dd-dimensional regular lattice and we suppose that the mobile species perform independent, homogeneous, discrete-time lattice random walks. The model involving a single, immobile, ungated target A and a concentration of mobile, gated B particles is solved exactly. For the remaining three models we determine exactly, in form of rigorous lower and upper bounds, the large-N asymptotical behavior of the A particle survival probability. We also realize that for all four models studied here such a probalibity can be interpreted as the moment generating function of some functionals of random walk trajectories, such as, e.g., the number of self-intersections, the number of sites visited exactly a given number of times, "residence time" on a random array of lattice sites and etc. Our results thus apply to the asymptotical behavior of the corresponding generating functions which has not been known as yet.Comment: Latex, 45 pages, 5 ps-figures, submitted to PR

    Growth Kinetics in Systems with Local Symmetry

    Full text link
    The phase transition kinetics of Ising gauge models are investigated. Despite the absence of a local order parameter, relevant topological excitations that control the ordering kinetics can be identified. Dynamical scaling holds in the approach to equilibrium, and the growth of typical length scale is characteristic of a new universality class with L(t)(t/lnt)1/2L(t)\sim \left(t/\ln t\right)^{1/2}. We suggest that the asymptotic kinetics of the 2D Ising gauge model is dual to that of the 2D annihilating random walks, a process also known as the diffusion-reaction A+AinertA+A\to \hbox{inert}.Comment: 10 pages in Tex, 2 Postscript figures appended, NSF-ITP-93-4

    Kinetics of Clustering in Traffic Flows

    Full text link
    We study a simple aggregation model that mimics the clustering of traffic on a one-lane roadway. In this model, each ``car'' moves ballistically at its initial velocity until it overtakes the preceding car or cluster. After this encounter, the incident car assumes the velocity of the cluster which it has just joined. The properties of the initial distribution of velocities in the small velocity limit control the long-time properties of the aggregation process. For an initial velocity distribution with a power-law tail at small velocities, \pvim as v0v \to 0, a simple scaling argument shows that the average cluster size grows as n \sim t^{\va} and that the average velocity decays as v \sim t^{-\vb} as tt\to \infty. We derive an analytical solution for the survival probability of a single car and an asymptotically exact expression for the joint mass-velocity distribution function. We also consider the properties of spatially heterogeneous traffic and the kinetics of traffic clustering in the presence of an input of cars.Comment: 18 pages, Plain TeX, 2 postscript figure

    Nonequilibrium Critical Dynamics of a Three Species Monomer-Monomer Model

    Full text link
    We study a three species monomer-monomer catalytic surface reaction model with a reactive steady state bordered by three equivalent unreactive phases where the surface is saturated with one species. The transition from the reactive to a saturated phase shows directed percolation critical behavior. Each pair of these reactive-saturated phase boundaries join at a bicritical point where the universal behavior is in the even branching annihilating random walk class. We find the crossover exponent from bicritical to critical behavior and a new exponent associated with the bicritical interface dynamics.Comment: 4 pages RevTex. 4 eps figures included with psfig.sty. Uses multicol.sty. Accepted for publication in PR
    corecore