203 research outputs found
Persistence in One-dimensional Ising Models with Parallel Dynamics
We study persistence in one-dimensional ferromagnetic and anti-ferromagnetic
nearest-neighbor Ising models with parallel dynamics. The probability P(t) that
a given spin has not flipped up to time t, when the system evolves from an
initial random configuration, decays as P(t) \sim 1/t^theta_p with theta_p
\simeq 0.75 numerically. A mapping to the dynamics of two decoupled A+A \to 0
models yields theta_p = 3/4 exactly. A finite size scaling analysis clarifies
the nature of dynamical scaling in the distribution of persistent sites
obtained under this dynamics.Comment: 5 pages Latex file, 3 postscript figures, to appear in Phys Rev.
AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes
Using a combination of computer methods for iterative database searches and multiple sequence alignment, we show that protein sequences related to the AAA family of ATPases are far more prevalent than reported previously. Among these are regulatory components of Lon and Clp proteases, proteins involved in DNA replication, recombination, and restriction (including subunits of the origin recognition complex, replication factor C proteins, MCM DNA-licensing factors and the bacterial DnaA, RuvB, and McrB proteins), prokaryotic NtrC-related transcription regulators, the Bacillus sporulation protein SpoVJ, Mg2+, and Co2+ chelatases, the Halobacterium GvpN gas vesicle synthesis protein, dynein motor proteins, TorsinA, and Rubisco activase. Alignment of these sequences, in light of the structures of the clamp loader delta' subunit of Escherichia coli DNA polymerase III and the hexamerization component of N-ethylmaleimide-sensitive fusion protein, provides structural and mechanistic insights into these proteins, collectively designated the AAA+ class. Whole-genome analysis indicates that this class is ancient and has undergone considerable functional divergence prior to the emergence of the major divisions of life. These proteins often perform chaperone-like functions that assist in the assembly, operation, or disassembly of protein complexes. The hexameric architecture often associated with this class can provide a hole through which DNA or RNA can be thread; this may be important for assembly or remodeling of DNA-protein complexes
Stochastic Aggregation: Rate Equations Approach
We investigate a class of stochastic aggregation processes involving two
types of clusters: active and passive. The mass distribution is obtained
analytically for several aggregation rates. When the aggregation rate is
constant, we find that the mass distribution of passive clusters decays
algebraically. Furthermore, the entire range of acceptable decay exponents is
possible. For aggregation rates proportional to the cluster masses, we find
that gelation is suppressed. In this case, the tail of the mass distribution
decays exponentially for large masses, and as a power law over an intermediate
size range.Comment: 7 page
Exact Solution of a Drop-push Model for Percolation
Motivated by a computer science algorithm known as `linear probing with
hashing' we study a new type of percolation model whose basic features include
a sequential `dropping' of particles on a substrate followed by their transport
via a `pushing' mechanism. Our exact solution in one dimension shows that,
unlike the ordinary random percolation model, the drop-push model has
nontrivial spatial correlations generated by the dynamics itself. The critical
exponents in the drop-push model are also different from that of the ordinary
percolation. The relevance of our results to computer science is pointed out.Comment: 4 pages revtex, 2 eps figure
Dynamic Scaling in One-Dimensional Cluster-Cluster Aggregation
We study the dynamic scaling properties of an aggregation model in which
particles obey both diffusive and driven ballistic dynamics. The diffusion
constant and the velocity of a cluster of size follow
and , respectively. We determine the dynamic exponent and
the phase diagram for the asymptotic aggregation behavior in one dimension in
the presence of mixed dynamics. The asymptotic dynamics is dominated by the
process that has the largest dynamic exponent with a crossover that is located
at . The cluster size distributions scale similarly in all
cases but the scaling function depends continuously on and .
For the purely diffusive case the scaling function has a transition from
exponential to algebraic behavior at small argument values as changes
sign whereas in the drift dominated case the scaling function decays always
exponentially.Comment: 6 pages, 6 figures, RevTeX, submitted to Phys. Rev.
Kinetics of stochastically-gated diffusion-limited reactions and geometry of random walk trajectories
In this paper we study the kinetics of diffusion-limited, pseudo-first-order
A + B -> B reactions in situations in which the particles' intrinsic
reactivities vary randomly in time. That is, we suppose that the particles are
bearing "gates" which interchange randomly and independently of each other
between two states - an active state, when the reaction may take place, and a
blocked state, when the reaction is completly inhibited. We consider four
different models, such that the A particle can be either mobile or immobile,
gated or ungated, as well as ungated or gated B particles can be fixed at
random positions or move randomly. All models are formulated on a
-dimensional regular lattice and we suppose that the mobile species perform
independent, homogeneous, discrete-time lattice random walks. The model
involving a single, immobile, ungated target A and a concentration of mobile,
gated B particles is solved exactly. For the remaining three models we
determine exactly, in form of rigorous lower and upper bounds, the large-N
asymptotical behavior of the A particle survival probability. We also realize
that for all four models studied here such a probalibity can be interpreted as
the moment generating function of some functionals of random walk trajectories,
such as, e.g., the number of self-intersections, the number of sites visited
exactly a given number of times, "residence time" on a random array of lattice
sites and etc. Our results thus apply to the asymptotical behavior of the
corresponding generating functions which has not been known as yet.Comment: Latex, 45 pages, 5 ps-figures, submitted to PR
Growth Kinetics in Systems with Local Symmetry
The phase transition kinetics of Ising gauge models are investigated. Despite
the absence of a local order parameter, relevant topological excitations that
control the ordering kinetics can be identified. Dynamical scaling holds in the
approach to equilibrium, and the growth of typical length scale is
characteristic of a new universality class with . We suggest that the asymptotic kinetics of the 2D Ising gauge
model is dual to that of the 2D annihilating random walks, a process also known
as the diffusion-reaction .Comment: 10 pages in Tex, 2 Postscript figures appended, NSF-ITP-93-4
Kinetics of Clustering in Traffic Flows
We study a simple aggregation model that mimics the clustering of traffic on
a one-lane roadway. In this model, each ``car'' moves ballistically at its
initial velocity until it overtakes the preceding car or cluster. After this
encounter, the incident car assumes the velocity of the cluster which it has
just joined. The properties of the initial distribution of velocities in the
small velocity limit control the long-time properties of the aggregation
process. For an initial velocity distribution with a power-law tail at small
velocities, \pvim as , a simple scaling argument shows that the
average cluster size grows as n \sim t^{\va} and that the average velocity
decays as v \sim t^{-\vb} as . We derive an analytical solution
for the survival probability of a single car and an asymptotically exact
expression for the joint mass-velocity distribution function. We also consider
the properties of spatially heterogeneous traffic and the kinetics of traffic
clustering in the presence of an input of cars.Comment: 18 pages, Plain TeX, 2 postscript figure
Nonequilibrium Critical Dynamics of a Three Species Monomer-Monomer Model
We study a three species monomer-monomer catalytic surface reaction model
with a reactive steady state bordered by three equivalent unreactive phases
where the surface is saturated with one species. The transition from the
reactive to a saturated phase shows directed percolation critical behavior.
Each pair of these reactive-saturated phase boundaries join at a bicritical
point where the universal behavior is in the even branching annihilating random
walk class. We find the crossover exponent from bicritical to critical behavior
and a new exponent associated with the bicritical interface dynamics.Comment: 4 pages RevTex. 4 eps figures included with psfig.sty. Uses
multicol.sty. Accepted for publication in PR
- …