22,055 research outputs found

    On the Resolution of Singularities of Multiple Mellin-Barnes Integrals

    Full text link
    One of the two existing strategies of resolving singularities of multifold Mellin-Barnes integrals in the dimensional regularization parameter, or a parameter of the analytic regularization, is formulated in a modified form. The corresponding algorithm is implemented as a Mathematica code MBresolve.mComment: LaTeX, 10 page

    Iteration of Planar Amplitudes in Maximally Supersymmetric Yang-Mills Theory at Three Loops and Beyond

    Get PDF
    We compute the leading-color (planar) three-loop four-point amplitude of N=4 supersymmetric Yang-Mills theory in 4 - 2 epsilon dimensions, as a Laurent expansion about epsilon = 0 including the finite terms. The amplitude was constructed previously via the unitarity method, in terms of two Feynman loop integrals, one of which has been evaluated already. Here we use the Mellin-Barnes integration technique to evaluate the Laurent expansion of the second integral. Strikingly, the amplitude is expressible, through the finite terms, in terms of the corresponding one- and two-loop amplitudes, which provides strong evidence for a previous conjecture that higher-loop planar N = 4 amplitudes have an iterative structure. The infrared singularities of the amplitude agree with the predictions of Sterman and Tejeda-Yeomans based on resummation. Based on the four-point result and the exponentiation of infrared singularities, we give an exponentiated ansatz for the maximally helicity-violating n-point amplitudes to all loop orders. The 1/epsilon^2 pole in the four-point amplitude determines the soft, or cusp, anomalous dimension at three loops in N = 4 supersymmetric Yang-Mills theory. The result confirms a prediction by Kotikov, Lipatov, Onishchenko and Velizhanin, which utilizes the leading-twist anomalous dimensions in QCD computed by Moch, Vermaseren and Vogt. Following similar logic, we are able to predict a term in the three-loop quark and gluon form factors in QCD.Comment: 54 pages, 7 figures. v2: Added references, a few additional words about large spin limit of anomalous dimensions. v3: Expanded Sect. IV.A on multiloop ansatz; remark that form-factor prediction is now confirmed by other work; minor typos correcte

    Fermionic decays of scalar leptoquarks and scalar gluons in the minimal four color symmetry model

    Full text link
    Fermionic decays of the scalar leptoquarks S=S1(+),S1(−),Sm S=S_1^{(+)}, S_1^{(-)}, S_m and of the scalar gluons F=F1,F2F=F_1, F_2 predicted by the four color symmetry model with the Higgs mechanism of the quark-lepton mass splitting are investigated. Widths and branching ratios of these decays are calculated and analysed in dependence on coupling constants and on masses of the decaying particles. It is shown that the decays S1(+)→tlj+,S1(−)→νib~,Sm→tν~j,F1→tb~,F2→tt~ S_1^{(+)}\to tl^+_j, S_1^{(-)}\to \nu_i\tilde b, S_m\to t\tilde \nu_j, F_1\to t\tilde b, F_2\to t\tilde t are dominant with the widths of order of a few GeV for mS,mF<1m_S, m_F<1 TeV and with the total branching ratios close to 1. In the case of mS<mtm_S < m_t the dominant scalar leptoquark decays are S_1^{(+)}\to cl_j^+, S_1^{(-)}\to \nu_i\tilde b, S_m\to b\l_j^+, S_m\to c\tilde \nu_j with the total branching ratios Br(S1(+)→cl+)≈Br(S_1^{(+)}\to cl^+) \approx Br(S1(−)→νb~)≈1Br(S_1^{(-)}\to \nu\tilde b) \approx 1, Br(Sm→bl+)≈0.9Br(S_m\to bl^+) \approx 0.9 and Br(Sm→cν~)≈0.1.Br(S_m\to c\tilde \nu) \approx 0.1. A search for such decays at the LHC and Tevatron may be of interest.Comment: 11 pages, 1 figure, 1 table, to be published in Modern Physics Letters

    Asymptotic Bound-state Model for Feshbach Resonances

    Get PDF
    We present an Asymptotic Bound-state Model which can be used to accurately describe all Feshbach resonance positions and widths in a two-body system. With this model we determine the coupled bound states of a particular two-body system. The model is based on analytic properties of the two-body Hamiltonian, and on asymptotic properties of uncoupled bound states in the interaction potentials. In its most simple version, the only necessary parameters are the least bound state energies and actual potentials are not used. The complexity of the model can be stepwise increased by introducing threshold effects, multiple vibrational levels and additional potential parameters. The model is extensively tested on the 6Li-40K system and additional calculations on the 40K-87Rb system are presented.Comment: 13 pages, 8 figure

    Nodal Domain Statistics for Quantum Maps, Percolation and SLE

    Full text link
    We develop a percolation model for nodal domains in the eigenvectors of quantum chaotic torus maps. Our model follows directly from the assumption that the quantum maps are described by random matrix theory. Its accuracy in predicting statistical properties of the nodal domains is demonstrated by numerical computations for perturbed cat maps and supports the use of percolation theory to describe the wave functions of general hamiltonian systems, where the validity of the underlying assumptions is much less clear. We also demonstrate that the nodal domains of the perturbed cat maps obey the Cardy crossing formula and find evidence that the boundaries of the nodal domains are described by SLE with κ\kappa close to the expected value of 6, suggesting that quantum chaotic wave functions may exhibit conformal invariance in the semiclassical limit.Comment: 4 pages, 5 figure

    Energetic Consistency and Momentum Conservation in the Gyrokinetic Description of Tokamak Plasmas

    Full text link
    Gyrokinetic field theory is addressed in the context of a general Hamiltonian. The background magnetic geometry is static and axisymmetric, and all dependence of the Lagrangian upon dynamical variables is in the Hamiltonian or in free field terms. Equations for the fields are given by functional derivatives. The symmetry through the Hamiltonian with time and toroidal angle invariance of the geometry lead to energy and toroidal momentum conservation. In various levels of ordering against fluctuation amplitude, energetic consistency is exact. The role of this in underpinning of conservation laws is emphasised. Local transport equations for the vorticity, toroidal momentum, and energy are derived. In particular, the momentum equation is shown for any form of Hamiltonian to be well behaved and to relax to its magnetohydrodynamic (MHD) form when long wavelength approximations are taken in the Hamiltonian. Several currently used forms, those which form the basis of most global simulations, are shown to be well defined within the gyrokinetic field theory and energetic consistency.Comment: RevTeX 4, 47 pages, no figures, revised version updated following referee comments (discussion more strictly correct/consistent, 4 references added, results unchanged as they depend on consistency of the theory), resubmitted to Physics of Plasma

    Test of asymptotic freedom and scaling hypothesis in the 2d O(3) sigma model

    Full text link
    The 7--particle form factors of the fundamental spin field of the O(3) nonlinear σ\sigma--model are constructed. We calculate the corresponding contribution to the spin--spin correlation function, and compare with predictions from the spectral density scaling hypothesis. The resulting approximation to the spin--spin correlation function agrees well with that computed in renormalized (asymptotically free) perturbation theory in the expected energy range. Further we observe simple lower and upper bounds for the sum of the absolute square of the form factors which may be of use for analytic estimates.Comment: 14 pages, 3 figures, late

    Infrared study of spin-Peierls compound alpha'-NaV2O5

    Full text link
    Infrared reflectance of alpha'-NaV2O5 single crystals in the frequency range from 50 cm-1 to 10000 cm-1 was studied for a, b and c-polarisations. In addition to phonon modes identification, for the a-polarised spectrum a broad continuum absorption in the range of 1D magnetic excitation energies was found. The strong near-IR absorption band at 0.8 eV shows a strong anisotropy with vanishing intensity in c-polarisation. Activation of new phonons due to the lattice dimerisation were detected below 35K as well as pretransitional structural fluctuations up to 65K.Comment: 3 pages, 2 figures, 1 table. Contributed paper for the SCES'98 (15-18 July 1998, Paris). To be published in Physica
    • …
    corecore