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Asymptotic-bound-state model for Feshbach resonances
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We present an asymptotic-bound-state model which can be used to accurately describe all Feshbach resonance
positions and widths in a two-body system. With this model we determine the coupled bound states of a particular
two-body system. The model is based on analytic properties of the two-body Hamiltonian and on asymptotic
properties of uncoupled bound states in the interaction potentials. In its most simple version, the only necessary
parameters are the least bound state energies and actual potentials are not used. The complexity of the model
can be stepwise increased by introducing threshold effects, multiple vibrational levels, and additional potential
parameters. The model is extensively tested on the 6Li-40K system and additional calculations on the 40K-87Rb
system are presented.

DOI: 10.1103/PhysRevA.82.042712 PACS number(s): 34.50.−s, 34.20.Cf, 67.85.−d

I. INTRODUCTION

The field of ultracold atomic gases has been rapidly growing
during the past decades. One of the main sources of growth
is the large degree of tunability allowing employment of
ultracold gases as model quantum systems [1,2]. In particular,
the strength of the two-body interaction parameter, captured
by the scattering length a, can be tuned over many orders
of magnitude. A quantum system can be made repulsive
(a > 0), attractive (a < 0), noninteracting (a = 0), or strongly
interacting (|a| → ∞) in a continuous manner by means of
Feshbach resonances [3]. These resonances are induced by
external fields: magnetically induced Feshbach resonances
are conveniently used for alkali-metal atoms, while optically
induced Feshbach resonances seem more promising for,
e.g., alkaline-earth-metal atoms. In this paper we consider
magnetically induced resonances only.

Feshbach resonances depend crucially on the existence of
an internal atomic structure, which can be modified by external
fields. For alkali-metal atoms, this structure is initiated by the
hyperfine interaction, which can be energetically modified by
a magnetic field via the Zeeman interaction. For a given initial
spin state, its collision threshold and its two-body bound states
depend in general differently on the magnetic field. A Feshbach
resonance occurs when the threshold becomes degenerate with
a bound state. Accurate knowledge of the Feshbach resonance
structure is crucial for experiments.

The two-body system has to be solved to obtain the bound
state solutions. Since the interactions have both orbital and
spin degrees of freedom, this results in a set of radially coupled
Schrödinger equations in the spin basis. The set of equations is
referred to as coupled-channel equations [4] and can be solved
numerically. Quite often it is far from trivial to obtain reliable
predictions for the two-body problem, for several reasons: the
ab initio interaction potentials are usually not accurate enough
to describe ultracold collisions. Therefore these potentials have
to be modeled by adding and modifying potential parameters.
A full calculation for all spin combinations and all potential

*Present address: Department of Physics, Harvard University,
Cambridge, MA 02138, USA

variations is very time consuming. Moreover, one can easily
overlook some features of the bound state spectrum due to
numerical issues such as grid sizes and numerical accuracy.
This is also due to a lack of insight into the general resonance
structure, which is often not obvious from the numerical
results.

Given the above, there is certainly a need for fast and simple
models to predict and describe Feshbach resonances, which
allow for a detailed insight into the resonance structure. In the
last decade various simple models have been developed for
ultracold collisions [5–7], which vary significantly in terms of
complexity, accuracy, and applicability. In all these models the
radial equation plays a central role in describing the Feshbach
resonances.

In this paper we present in detail the asymptotic-bound-state
model (ABM). This model, briefly introduced in Ref. [8],
and extended in Ref. [9], was successfully applied to the
Fermi-Fermi mixture of 6Li and 40K. In Ref. [8] the observed
loss features were assigned to 13 Feshbach resonances with
high accuracy, and the obtained parameters served as an input
to a full coupled-channel analysis. The ABM builds on an
earlier model by Moerdijk et al. [10] for homonuclear systems,
which was also applied by Stan et al. [11] for heteronuclear
systems. This earlier model neglects the mixing of singlet
and triplet states, therefore allowing the use of uncoupled
orbital and spin states. In the ABM we make use of the radial
singlet and triplet eigenstates and include the coupling between
them, which is a crucial improvement. When these eigenstates
form a complete set, including all bound and virtual states
of the potentials for all partial waves, this makes the whole
approach in principle exact. In practice, only a limited number
of states (parameters) have to be taken into account, to achieve
already a high degree of accuracy. On this level it would be
very interesting to compare the ABM to other simple models,
such as the multichannel quantum defect theory approach in
Ref. [7], which also starts from an in-principle exact approach.

We show how we can systematically extend the most simple
version of the ABM to predict the width of the Feshbach
resonances by including threshold behavior. Additionally, we
allow for the inclusion of multiple vibrational levels and
parameters for the spatial wave function overlap. The fact
that the ABM is computationally light provides the possibility
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to map out the available Feshbach resonance positions and
widths for a certain system, as has been shown in Ref. [9].
Throughout the paper we will use the 6Li-40K mixture as a
model system to illustrate all introduced aspects. Additionally,
we present ABM calculations on the 40K-87Rb mixture to
demonstrate its validity on a more complex system, comparing
it with accurate coupled-channel calculations [12]. The case of
metastable helium atoms where each atom has an electron spin
of s = 1 and the interaction occurs through singlet, triplet, and
quintet interaction potentials we discuss elsewhere [13].

In the following we describe the ABM (Sec. II) and various
methods to obtain the required input parameters. In Sec. III the
ABM is applied to the three physical systems and in Sec. IV
we introduce the coupling to the open channel to predict the
width of Feshbach resonances. In Sec. V we summarize our
findings and comment on further extensions of the model.

II. ASYMPTOTIC-BOUND-STATE MODEL

In this section we give a detailed description of the
asymptotic-bound-state model. In Sec. II A we start with a
general overview of the model, which is described in more
detail in Secs. II B–II F.

A. Overview

In the ABM we consider two atoms, α and β, in their
electronic ground state. To search for Feshbach resonances we
use the effective Hamiltonian [14]

H = Hrel + Hint. (1)

Here Hrel = p2/2µ + V describes the relative motion of the
atoms in the center-of-mass frame: the first term is the relative
kinetic energy, with µ the reduced mass, the second term the
effective interaction potential V . The Hamiltonian Hint stands
for the internal energy of the two atoms.

We will represent Hint by the hyperfine and Zeeman
contributions to the internal energy (Sec. II B). Therefore,
Hint is diagonal in the Breit-Rabi pair basis {|αβ〉} with
eigen-energies Eαβ and typically dependent on the magnetic
field B. The internal states |αβ〉 in combination with the
quantum number l for the angular momentum of the relative
motion define the scattering channels (αβ,l).

Because the effective potential V is in general not diagonal
in the pair basis {|αβ〉}, the internal states of the atoms can
change in collisions. To include the coupling of the channels
by V , we transform from the pair basis to a spin basis {|σ 〉} in
which Hrel is diagonal. We will restrict ourselves (Sec. II C)
to effective potentials V which are diagonal in S, the quantum
number of the total electron spin S = sα+sβ , where sα and
sβ are the electron spins of the colliding atoms. The effective
potential can thus be written asV(r) = ∑

S |S〉VS(r)〈S|, where
r is the interatomic separation. The examples discussed in
this paper are alkali-metal atoms (s = 1/2), which lead to
a decomposition into singlet (S = 0) and triplet (S = 1)
potentials.

The eigenstates of Hrel (bound states and scattering states)
are solutions of the Schrödinger equations for a given value
of l, using effective potentials V l

S(r) in which the centrifugal
forces are included (Sec. II C). Since the effective potentials

are central interactions, a separation of variables can be
performed to describe the wave function as a product of a
radial and angular part, |�〉 = |ψ〉|Y l

ml
〉. The ABM solves the

Schrödinger equation for the Hamiltonian (1) starting from
a restricted set of (typically just a few) discrete eigenstates
|ψSl

ν 〉|Y l
ml

〉 of Hrel, using their binding energies εSl
ν as free

parameters. The continuum states are not used in the model.
The set {|ψSl

ν 〉} corresponds to the bound state wave functions
ψSl

ν (r) = 〈r|ψSl
ν 〉 in the effective potentials V l

S(r), with ν

and l being the vibrational and rotational quantum numbers,
respectively.

The ABM solutions are obtained by diagonalization of
the Hamiltonian (1) using the restricted set of bound states
{|ψSl

ν 〉|σ 〉}. This is equivalent to solving the secular equation

det
∣∣(εSl

ν − Eb

)
δνlσ,ν ′l′σ ′ + 〈

ψSl
ν

∣∣ψS ′l
ν ′

〉〈σ |Hint|σ ′〉∣∣ = 0, (2)

where we have used the orthonormality of |Y l
ml

〉. The roots Eb

represent the eigenvalues of H, which are shifted with respect
to the bare levels εSl

ν due to the presence of the coupling term
Hint. The roots Eb will be accurate as long as the influence
of the continuum solutions is small. Since the bound state
wave functions ψSl

ν (r) are orthonormal for a given value of
S and l, the Franck-Condon factors are 〈ψSl

ν |ψSl
ν ′ 〉 = δνν ′ . The

eigenstates of H define bound states in the system of coupled
channels.

We define the entrance channel (αβ,l)0 by the internal states
|αβ〉 for which we want to find Feshbach resonances with a
given angular momentum state of l = 0,1, . . . . The energy
E0

αβ(B) of two free atoms at rest in the entrance channel
defines the threshold energy, which separates the continuum
of scattering states from the discrete set of bound states. In the
ABM we define H relative to this energy. With this convention
the threshold energy always corresponds to E = 0, irrespective
of the magnetic field. Further, we consider only entrance
channels that are stable against spin exchange relaxation.

Since in the ABM we consider only bound states, and
therefore are in the regime E < 0, all channels are energet-
ically closed. Collisions in the entrance channel would have a
collision energy of E > 0 and the entrance channel would be
energetically open, i.e., the atoms are not bound and have a
finite probability of reaching r = ∞ in this channel. Although
all channels are closed in the ABM we will refer to the entrance
channel as the open channel, anticipating the inclusion of
threshold effects in Sec. IV.

In Secs. II B–II F we discuss the ABM in its simplest
form, where level broadening by coupling to the continuum is
neglected [8]. In this approximation, Feshbach resonances are
predicted for magnetic fields B0 where a bound level crosses
the threshold, Eb = µrel(B − B0) with µrel ≡ ∂Eb/∂B|B=B0 ,
and where coupling to the continuum is in principle allowed
by conservation of the angular momentum. To determine the
crossings the diagonalization (2) has to be carried out as a
function of magnetic field.

The procedure becomes particularly simple when the
coupling strength Hint is small compared to the separation
of the rovibrational levels in the various potentials V l

S(r)
because in this case the basis set can be restricted to only
the least bound level in each of the potentials V l

S(r). In
this case the set of levels {εSl

ν } reduces to a small number
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{εSl}, with |sα − sβ | � S � sα + sβ . In the case of the alkali
metals, only two levels ε0l and ε1l are relevant for each
value of l. Further, as will be shown in Sec. II F, the least
bound states have the long-range behavior of asymptotically
bound states, which makes it possible to estimate the value of
Franck-Condon factors 〈ψSl

ν |ψS ′l
ν ′ 〉 without detailed knowledge

of the short-range behavior of the potentials V l
S(r). This

reduces the diagonalization (2) to the diagonalization of a
spin Hamiltonian. Treating the {εSl} as fitting parameters,
their values can be determined by comparison with a handful
of experimentally observed resonances. Once these {εSl} are
known, the position of all Feshbach resonances associated
with these levels can be predicted. As this procedure does not
involve numerical solution of the Schrödinger equation for the
relative motion it provides an enormous simplification over
coupled-channel calculations.

In Sec. IV we turn to the extended version of the ABM
in which also the coupling to the open channel is taken into
account. The presence of such a coupling gives rise to a shift

 of the uncoupled levels and above threshold to a broadening
� [9]. The width of a Feshbach resonance is related to the
lifetime τ = h̄/� of the bound state above threshold and
provides a measure for the coupling to the continuum. In
magnetic field units the width 
B is related to the scattering
length by the expression [10]

a(B) = abg

(
1 − 
B

B − B0

)
, (3)

where abg is the background scattering length. Interestingly,
the width 
B can also be determined with the same restricted
basis set {|ψSl

ν 〉}, which does not include continuum states. In
Sec. IV this is shown for the simplest case where only a single
level is resonant and the resonance width can be found from
the coupling of two bound state levels: the resonant level and
the least bound level in the entrance channel.

B. Internal energy

To describe the internal energy of the colliding atoms we
restrict the atomic Hamiltonian to the hyperfine and Zeeman
interactions

HA = Hhf + HZ (4)

= ahf

h̄2 i · s + (γes − γi i) · B, (5)

where s and i are the electron and nuclear spins, respectively,
γe and γi are their respective gyromagnetic ratios, ahf is the
hyperfine energy, and B is the externally applied magnetic
field. The hyperfine interaction couples the electron and
nuclear spins, which add to a total angular momentum f =
s + i. In Fig. 1 the well-known Breit-Rabi diagrams of 6Li and
40K are shown, the curves corresponding to the eigenvalues
of HA. The one-atom hyperfine states are labeled |f mf 〉,
although f is a good quantum number only in the absence
of an external magnetic field.

By labeling the colliding atoms with α and β, the two-body
internal Hamiltonian becomes Hint = HA

α + HA
β , and the spin

state of the colliding pair can be described in the Breit-Rabi
pair basis |αβ〉 ≡ |fαmfα

,fβmfβ
〉 ≡ |f,mf 〉α ⊗ |f,mf 〉β . The

FIG. 1. Single-atom hyperfine diagrams for 6Li and 40K. The
curves correspond to the eigenvalues of HA and are labeled by the
zero-field quantum numbers |f mf 〉.

corresponding energy of two free atoms at rest defines the
B-dependent threshold energy introduced in Sec. II A.

C. Relative Hamiltonian

The bound eigenstates of Hrel play a central role in the de-
termination of the coupled bound states H responsible for the
Feshbach resonances. The relative Hamiltonian includes the
effective interaction V resulting from all Coulomb interactions
between the nuclei and electrons of both atoms.1 This effective
interaction is isotropic and depends only on the quantum
number S associated with the total electron spin. For these
central potentials the two-body solutions will depend on the
orbital quantum number l, but not on its projection ml . In the
absence of any anisotropic interaction both l and ml are good
quantum numbers of Hrel and H.

We specify the ABM basis states as {|ψSl
ν 〉|σ 〉}. Here the

spin basis states |σ 〉 ≡ |SMSµαµβ〉 are determined by the spin
quantum number S and the magnetic quantum numbers MS ,
µα , and µβ of the S, iα , and iβ operators, respectively. The sum
MF = MS + µα + µβ is conserved by the Hamiltonian H.
This limits the number of spin states which have to be included
in the set |σ 〉. The bound state wave functions ψSl

ν (r) for the
singlet and triplet potentials, characterized by the vibrational
and rotational quantum numbers ν and l, satisfy the reduced
radial wave equation of Hrel for specific values of S and l,(

− h̄2

2µ

d2

dr2
+ V l

S(r)

)
ψSl

ν (r) = εSl
ν ψSl

ν (r). (6)

Here V l
S(r) ≡ VS(r) + l(l + 1)h̄2/(2µr2) represents the in-

teraction potentials including the centripetal forces. The
corresponding binding energies are given by εSl

ν . In this
paper we mainly focus on heteronuclear systems; however,
the ABM works equally well for homonuclear systems. In
the latter case one would rather use a symmetrized spin basis
|σ 〉 ≡ |SMSIMI 〉, where I is the total nuclear spin and MI is
the magnetic quantum number for I = iα + iβ as described in
Ref. [10].

1The much weaker magnetic dipole-dipole interactions are
neglected.
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D. Diagonalization of H
In the ABM basis {|ψSl

ν 〉|σ 〉} the Zeeman term HZ is
diagonal, with

EZ
σ = 〈σ |HZ|σ 〉 = h̄(γeMS − γαµα − γβµβ)B (7)

the Zeeman energy of state |σ 〉. As the orbital angular
momentum is conserved, we can solve Eq. (2) separately for
every l subspace. Since the set {|ψSl

ν 〉|σ 〉} is orthonormal the
secular equation takes (for a given value of l) the form

det
∣∣(εSl

ν + EZ
σ − Eb

)
δνσ,ν ′σ ′ + η

S,S ′
ν,ν ′ 〈σ |Hhf|σ ′〉∣∣ = 0, (8)

where η
S,S ′
ν,ν ′ = 〈ψSl

ν |ψS ′l
ν ′ 〉 are Franck-Condon factors between

the different S states, which are numbers in the range
0 � |ηS,S ′

ν,ν ′ | � 1 for S �= S ′ and η
S,S
ν,ν ′ = δν,ν ′ . Repeating the

procedure as a function of magnetic field, the energy level
diagram of all bound states in the system of coupled channels
is obtained.

It is instructive to separate the hyperfine contribution into
two parts, Hhf = H+

hf + H−
hf , where

H±
hf = aα

hf

2h̄2 (sα ± sβ) · iα ± a
β

hf

2h̄2 (sα ± sβ) · iβ. (9)

Because H+
hf conserves S, it couples the ABM states only

within the singlet and triplet manifolds. The term H−
hf is off

diagonal in the ABM basis, and hence couples singlet to triplet.
Accordingly, also the hyperfine term in the secular equation
separates into two parts,

η
S,S ′
ν,ν ′ 〈σ |Hhf|σ ′〉 = δν,ν ′ 〈σ |H+

hf|σ ′〉 + η
S,S ′
ν,ν ′ 〈σ |H−

hf|σ ′〉. (10)

Note that the second term of Eq. (10) is zero unless S �=
S ′. This term was neglected in the models of Refs. [10,11].
This is a good approximation if no Feshbach resonances occur
near magnetic fields, where the energy difference between
singlet and triplet levels is on the order of the hyperfine energy.
However, for a generic case this term cannot be neglected.

To demonstrate the procedure of identification of Feshbach
resonances, we show in Fig. 2 the ABM solutions for a
simple fictitious homonuclear system with S = 1 and I = 2
for an entrance channel with MF = MS + MI = 0 and l = 0.
The example has the spin structure of 6Li but we use ABM
parameters ε0, ε1, and η01, with values chosen for convenience
of illustration. The field dependence of threshold energy of the
entrance channel E0

αβ is shown here explicitly (dashed line).
The energies Eb (solid lines) are labeled by their high-field
quantum numbers |SMSIMI 〉, and the binding energies in
the singlet and triplet potentials are chosen to be ε0 = −10
and ε1 = −5. The avoided crossings around B = 0 are caused
by the hyperfine interaction and are proportional to ahf ; the
avoided crossing between the singlet and triplet levels is
proportional to the wave function overlap η01. Four s-wave
Feshbach resonances occur, indicated at the crossings 1, 2, and
3 (double resonance). The resonances at 1 and 2 are mostly
determined by the triplet binding energy ε1 and the resonances
at 3 by the singlet binding energy ε0.

E. Free parameters

The free parameters of the ABM are the binding energies
εS,l
ν and the Franck-Condon factors η

S,S ′
ν,ν ′ . These parameters

0

-5

-10

-15

0100 515

1

2

3

~

~

FIG. 2. ABM calculation for a fictitious homonuclear system with
S = 1 and I = 2 for an entrance channel with MF = MS + MI = 0
and l = 0. The threshold energy of the entrance channel E0

αβ is shown
here explicitly as the dashed line. The energies Eb (solid lines) are
labeled by their high-field quantum numbers |SMSIMI 〉. The binding
energies of the least bound states in the singlet and triplet potentials
are chosen to be ε0 = −10 and ε1 = −5. The avoided crossing around
B = 0 is proportional to the hyperfine interaction ahf and those
between the singlet and triplet levels to the wave function overlap η01

and the hyperfine interaction ahf . Four Feshbach resonances occur
indicated at the crossings 1, 2, and 3 (double resonance).

can be obtained in a variety of manners. Here we discuss three
methods, two of which will be demonstrated in Sec. III and
the third in Ref. [13].

First, if the scattering potentials V l
S(r) are very well known,

the bound state wave functions of the vibrational levels
can be obtained by solving Eq. (6) for εSl

ν < 0. Numerical
values of the Franck-Condon factors follow from the obtained
eigenfunctions. This method is very accurate and can be
extended to deeply bound levels; however, accurate model
potentials are available for only a limited number of systems.

A second method can be used when the potentials are
not very well or only partially known. For large interatomic
distances the potentials can be parametrized by the dispersion
potential

V (r) = −C6

r6
. (11)

Since this expression is not correct for short distances,
we account for the inaccurate inner part of the potential
by a boundary condition based on the accumulated phase
method [15]. This boundary condition has a one-to-one
relationship to the interspecies s-wave singlet and triplet
scattering lengths. This approach requires only three input
parameters: the van der Waals C6 coefficient and the singlet
(aS) and triplet (aT ) scattering lengths. For an accurate
description involving deeper bound states, the accumulated
phase boundary condition can be made more accurate by
including additional parameters [15].

The third method to obtain the free parameters is by direct
comparison of ABM predictions with experimentally observed
Feshbach resonances, for instance obtained in a search for loss
features in an ultracold atomic gas. A loss feature spectrum
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can be obtained by measuring, as a function of magnetic field,
the remaining number of atoms after a certain holding time at
fixed magnetic field. The ABM parameters follow by a fitting
procedure yielding the best match of the predicted threshold
crossing fields with the observed loss feature spectrum. We
applied this method in Ref. [8], where it has proven to be very
powerful for rapid assignment of Feshbach resonances in the
6Li-40K mixture due to the small computational time required
to diagonalize a spin Hamiltonian.

The number of fit parameters is determined by the number
of bound states that have to be considered. Depending on the
atomic species and the magnetic field, only a selected number
of vibrational levels εSl

ν have to be taken into account. This
number can be estimated by considering the maximum energy
range involved. An upper bound results from comparing the
maximum dissociation energy of the least bound vibrational
level D∗ with the maximum internal energy of the atom
pair Eint,max. The maximum dissociation energy of the νth
vibrational level can be estimated semiclassically [16] as

D∗ =
(

νζh̄

µ1/2C
1/6
6

)3

, (12)

where ζ = 2[�(1 + 1/6)/�(1/2 + 1/6)] 
 3.434, ν being
counted from the dissociation limit, i.e., ν = 1 is the least
bound state. The maximum internal energy is given by the
sum of the hyperfine splitting of each of the two atoms at zero
field, the maximum Zeeman energy for the free atom pair and
the maximum Zeeman energy for the molecule:

Eint,max 
 Eα
hf + E

β

hf + 2(sα + sβ)gSµBB, (13)

where E
α,β

hf = a
α,β

hf (iα,β + sα,β) and we have neglected the
nuclear Zeeman effect. Comparing Eqs. (12) and (13) gives us
an expression for the number of vibrational levels Nν which
have to be considered,

Nν 

⌈

µ1/2C
1/6
6

h̄ζ
E

1/3
int,max

⌉
, (14)

where �x� denotes the smallest integer not less than the
argument x. The maximum possible magnetic field Bmax

required to encounter a Feshbach resonance can be estimated
from Eq. (12) by neglecting the hyperfine energy as

Bmax 
 D∗

(sα + sβ)gSµB

; (15)

here we assumed an (unfavorable) spin mixture where either
the threshold or the bound level does not shift with respect to
the magnetic field. If the hyperfine energy is comparable to or
larger than the vibrational level splitting D∗, the expression
for Bmax overestimates the maximum field of the lowest-field
Feshbach resonance.

F. Asymptotic bound states

The most crucial ABM parameters are the binding ener-
gies εSl

ν . However, for accurate predictions of the Feshbach
resonance positions the Franck-Condon factors also have
to be accurate. For weakly bound states, these factors are
mainly determined by the difference in binding energy of
the overlapping states, rather than by the potential shape.

Therefore good approximations can be made with little
knowledge of the scattering potential.

For very weakly bound states, the outer classical turning
point rc is found at distances rc  r0; i.e., far beyond the van
der Waals radius of the interaction potential,

r0 = 1

2

(
2µC6

h̄2

)1/4

. (16)

These states are called halo states [17]. Because in this case
most of the probability density of the wave function is found
outside the outer classical turning point, these states can be
described by a zero-range potential with a wave function of
the type ψ(r) ∼ e−κr , where κ = (−2µε/h̄2)1/2 is the wave
number corresponding to a bound state with binding energy
ε. The Franck-Condon factor of two halo states with wave
numbers κ0 and κ1 is given by

〈ψ0|ψ1〉 = 2
√

κ0κ1

κ0 + κ1
. (17)

This approximation is valid for binding energies |ε| � C6/r6
0 .

The calculation of the Franck-Condon factors can be
extended to deeper bound states by including the dispersive van
der Waals tail. For distances r  rX, where rX is the exchange
radius, the potential is well described by Eq. (11), and the
Franck-Condon factors can be calculated by numerically
solving the Schrödinger equation (6) for the van der Waals
potential (11) on the interval rX < r < ∞ [18]. The exchange
radius rX is defined as the distance where the van der Waals
interaction equals the exchange interaction. This method can
be used for asymptotic bound states, which we define by the
condition rc > rX. If even deeper bound states, with rc < rX,
have to be taken into account, the potential can be extended by
including the exchange interaction [19] or by using full model
potentials.

To illustrate the high degree of accuracy achieved by using
asymptotic bound states, we calculate the Franck-Condon
factor for a contact potential (halo states), a van der Waals
potential (asymptotic bound states), and a full model potential
including short-range behavior, derived from Refs. [20,21].
Figure 3 shows the Franck-Condon factor η01

11 for 6Li-40K
calculated numerically for the model potential and the van der
Waals potential, and analytically using Eq. (17). The van der
Waals coefficient used is C6 = 2322Eha

6
0 [22], where Eh =

4.359 74 × 10−18 J and a0 = 0.052 917 72 nm. The value of
η01

11 has been plotted as a function of the triplet binding energy
ε1 for three different values of the singlet binding energy
ε0. It is clear that the contact potential is applicable only
for ε/h <∼ 100 MHz; hence only for systems with resonant
scattering in the singlet and triplet channels.

The approximation based on the C6 potential yields good
agreement down to binding energies of ε/h <∼ 40 GHz, which
is much more than the maximum possible vibrational level
splitting of the least bound states (D∗/h = 8.2 GHz), and
hence is sufficient to describe Feshbach resonances originating
for the least bound vibrational level. The black circle indicates
the actual Franck-Condon factor for the least bound state
of 6Li-40K. For the contact, van der Waals, and model
potentials we find η01

11 = 0.991, η01
11 = 0.981, and η01

11 = 0.979,
respectively.
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FIG. 3. (Color online) Franck-Condon factor η01
ν,ν′ for the least

bound states of the 6Li-40K system, calculated as a function of the
triplet binding energy ε1 for three different values of ε0/h = 7.16,
716, and 7.16 × 104 MHz. η01

ν,ν′ is calculated for the model potential
(dashed blue), the −C6/r6 potential (solid red), and the contact
potential, Eq. (17) (dash-dotted green). The black circle indicates the
actual value for the least bound state of 6Li-40K (ε0/h = 716 MHz
and ε1/h = 425 MHz). The nodes in η01

ν,ν′ correspond approximately
to the appearance of deeper-lying vibrational states, i.e., for ε1/h >∼
104 MHz, ν > 1.

III. APPLICATION TO VARIOUS SYSTEMS

In this section we demonstrate the versatility of the ABM
by applying it to two different systems using the different
approaches as discussed in Sec. II E.

A. 6Li-40K

Both 6Li and 40K have electron spin s = 1/2; therefore the
total electron spin can be singlet S = 0 or triplet S = 1. We
intend to describe all loss features observed in Ref. [8]. Since
all these features were observed for magnetic fields below
300 G, we find that, by use of Eq. (14), it is sufficient to take
into account only the least bound state (ν = 1) of the singlet
and triplet potentials. This reduces the number of fit parameters
to εSl

ν = ε
0,l
1 and ε

1,l
1 . Subsequently, we calculate the rotational

shifts by parametrizing the l > 0 bound state energies with
the aid of model potentials2 as described by [20,21]. This
allows us to reduce the number of binding energies to be
considered to only two: ε

0,0
1 ≡ ε0 and ε

1,0
1 ≡ ε1. We now turn

to the Franck-Condon factor η01
11 of the two bound states.

As discussed in Sec. II F its value is η01
11 = 0.979 and can

be taken along in the calculation or approximated as unity.
We first consider the case of η01

11 ≡ 1; this reduces the total
number of fit parameters to only two. We fit the positions
of the threshold crossings to the 13 observed loss features
reported in Ref. [8] by minimizing the χ2 value while varying
ε0 and ε1. We obtain optimal values of ε0/h = 716(15) MHz
and ε1/h = 425(5) MHz, where the error bars indicate one
standard deviation. In Fig. 4, the threshold and spectrum
of coupled bound states with MF = +3 (−3) is shown for
positive (negative) magnetic field values. The color scheme
indicates the admixture of singlet and triplet contributions in

2Note that this procedure can also be applied with only a C6

coefficient by utilizing the accumulated phase method.

FIG. 4. (Color online) Energies of all the coupled bound states for
6Li-40K with total spin MF = ±3. The black solid line indicates the
threshold energy of the entrance channel |1/2, + 1/2〉Li ⊗ |9/2, +
5/2〉K for B < 0 and |1/2, + 1/2〉Li ⊗ |9/2, − 7/2〉K for B > 0. The
gray area represents the scattering continuum and the (colored) lines
indicate the coupled bound states. Feshbach resonances occur when a
bound state crosses the threshold energy. The color scheme indicates
the admixture of singlet and triplet contributions in the bound states
obtained from the eigenstates of the Hamiltonian (1). The strong
admixture near the threshold crossings at B 
 150 G demonstrates
the importance of the singlet-triplet mixing in describing Feshbach
resonance positions accurately. Since in these calculations the coupled
bound states are not coupled to the open channel, they exist even for
energies above the threshold.

the bound states. Feshbach resonances will occur at magnetic
fields where the energy of the coupled bound states and the
scattering threshold match. The strong admixture of singlet
and triplet contributions at the threshold crossings emphasizes
the importance of including the singlet-triplet mixing term
H−

hf in the Hamiltonian. All 13 calculated resonance positions
have good agreement with the coupled-channel calculations
as described in Ref. [8], verifying that the ABM yields a good
description of the threshold behavior of the 6Li-40K system for
the studied field values.

We repeat the χ2 fitting procedure now including the
numerical value of the overlap. The values of η01

11 for both the
s-wave and p-wave bound states are calculated numerically
while varying ε0 and ε1. This fit results in a slightly larger
χ2 value with corresponding increased discrepancies in the
resonance positions. However, all of the calculated resonance
positions are within the experimental widths of the loss
features. Therefore, the analysis with η01

11 ≡ 1 and η01
11 = 0.979

can be safely considered to yield the same results within the
experimental accuracy.

B. 40K-87Rb

We now turn to the 40K-87Rb mixture to demonstrate the
application of the ABM to a system including multiple (three)
vibrational levels in each potential and the corresponding
nontrivial values for the Franck-Condon factors. We consider
s-wave (l = 0) resonances. Although accurate K-Rb scattering
potentials are known [23], we choose to use the accumulated
phase method as discussed in Sec. II E using only three ABM
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continuum

FIG. 5. (Color online) Bound state spectrum for 40K-87Rb for
MF = −7/2 plotted with respect to the threshold energy E0

K,Rb

of the |9/2, − 9/2〉K + |1,1〉Rb mixture. Solid red lines are ABM
calculations and the blue dashed lines are numerical coupled-channel
calculations. Good agreement between the two calculations is found,
in particular for the weakest bound levels.

parameters to demonstrate the accuracy of the ABM for a more
complex system like 40K-87Rb.

We solve the reduced radial wave equation (6) for VS(r) =
−C6/r6 and the continuum state E = h̄2k2/2µ in the limit
k → 0. We obtain the accumulated phase boundary condition
at rin = 18a0 from the boundary condition at r → ∞ using the
asymptotic s-wave scattering phase shift δ0 = arctan(−ka),
where a is the known singlet or triplet scattering length.
Subsequently, we obtain binding energies for the three last
bound states of the singlet and triplet potential by solving the
same equation (6) but now using the accumulated phase at
r = rin and ψ(r → ∞) = 0 as boundary conditions. We nu-
merically calculate the Franck-Condon factors by normalizing
the wave functions for rin < r < r∞, thereby neglecting the
wave function in the inner part of the potential (0 < r < rin).
This approximation becomes less valid for more deeply bound
states. We use as input parameters C6 = 4274Eha

6
0 [22],

aS = −111.5a0, and aT = −215.6a0 [23]. Figure 5 shows the
spectrum of bound states with respect to the threshold energy
for the spin mixture of |f,mf 〉 = |9/2, − 9/2〉K and |1,1〉Rb

states. The red curves indicate the ABM results and the blue
curves correspond to full coupled-channel calculations [24].
The agreement between the two models is satisfactory,
especially for the weakest bound states close to the threshold.
A conceptually different analysis of the K-Rb system using
also only three input parameters has been performed by Hanna
et al. [7].

IV. FESHBACH RESONANCE WIDTH

A. Overview

The asymptotic-bound-state model has been used so far to
determine the position of the Feshbach resonances but not their
width. As is well known from standard Feshbach theory, the
width of s-wave resonances depends on the coupling between
the resonant level and the continuum [25,26]. For resonances
with l > 0 the width is determined by a physically different
process, namely, tunneling through the centrifugal barrier.
Here we discuss only the width of s-wave resonances. We
determine the resonance width by analyzing the shift of the

resonant level close to threshold due to the coupling with
the least bound state of the open channel. This is possible
using again the restricted basis set of bound states {|ψSl

ν 〉|σ 〉},
introduced in Sec. II. The possibility of obtaining the resonance
width by analyzing the shift is plausible because near a
resonance the scattering behavior in the zero-energy limit is
closely related to the threshold behavior of the bound state. To
reveal the coupling as contained in the ABM approximation,
we partition the total Hilbert space of the Hamiltonian (1)
into two orthogonal subspaces P and Q. The states of the
open channels are located in P space, those of the closed
channels in Q space [10]. This splits the Hamiltonian H into
four parts (cf. Sec. IV B): H = HPP + HPQ + HQP + HQQ.
Here HPP and HQQ describe the system within each subspace
and HPQ (= H†

QP ) describe the coupling between the P and
Q spaces, thus providing a measure for the coupling between
the open channels in P space and the closed channels in Q
space.

The scattering channels are defined by the Breit-Rabi pair
states |αβ〉 = |fαmfα

,fβmfβ
〉. In the associated pair basis the

diagonal matrix elements of the Hamiltonian H correspond to
the “bare” binding energies of the pair states; i.e., the binding
energy in the absence of coupling between the channels by
V (r). Restricting ourselves, for purposes of introduction, to
a single open channel and to the least bound states in the
interaction potentials, HPP is a single matrix element on the
diagonal of H, corresponding to the bare binding energy of
the least bound state of the entrance channel, εP = −h̄2κ2

P /2µ.
The energy εP can be readily calculated by projecting the pair
state on the spin basis {|σ 〉 = |SMsµαµβ〉}, and is given by

εP =
∑

S

εSl
ν

∑
MS,µα,µβ

〈SMsµαµβ |fαmfα
,fβmfβ

〉2. (18)

In the following sections we will show that the width 
B of
the resonance is a function of the bare binding energy εP of the
entrance channel and a single matrix element of HPQ, denoted
by K, representing the coupling of the level εP to the resonant
level in Q space. We will show that the width is given by the
expression

µrel
B = K2

2abgκP |εP | . (19)

Hence, once the ABM parameters are known, the width of the
resonances follows with an additional unitary transformation
of the ABM matrix to obtain the coupling coefficient K. In
view of the orthogonality of the subspaces P and Q, the
submatrix HQQ, corresponding to all closed channels, can
be diagonalized, leaving HPP unaffected but changing the
HPQ and HQP submatrices. In diagonalized form the HQQ

submatrix contains the energies εQ of all bound levels in Q
space and includes the coupling of all channels except the
coupling toP space. This transformation allows one to identify
the resonant bound state and the corresponding off-diagonal
matrix elementK inHPQ, which is a measure for the resonance
width. Thus we can obtain the coupling between the open and
closed channels without the actual use of continuum states.

In Sec. IV B we present the Feshbach theory tailored to
suit the ABM. We give a detailed description of the resonant
coupling, and demonstrate with a two-channel model how
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the ABM bound state energy Eb compares to the associated
P-space bare energy εP , and to the dressed level in the
entrance channel from which one can deduce the resonance
width. In Sec. IV C we generalize the results such that
the width of the Feshbach resonances can be obtained for
the general multichannel case. For a more thorough treatment
of the Feshbach formalism, we refer the reader to [25,26], and
for its application to cold atom scattering, e.g., [10].

B. Tailored Feshbach theory

By introducing the projector operators P and Q, which
project onto the subspaces P and Q, respectively, the two-
body Schrödinger equation can be split into a set of coupled
equations [10]

(E − HPP )|�P 〉 = HPQ|�Q〉, (20)

(E − HQQ)|�Q〉 = HQP |�P 〉, (21)

where |�P 〉 ≡ P |�〉, |�Q〉 ≡ Q|�〉, HPP ≡ PHP , HPQ ≡
PHQ, etc. Within Q space the Hamiltonian HQQ is diagonal
with eigenstates |φQ〉 corresponding to the two-body bound
state with eigenvalues εQ. The energy E = h̄2k2/2µ is defined
with respect to the open channel dissociation threshold.

We consider one open channel and assume that near a
resonance it couples to a single closed channel. This allows
us to write the S matrix of the effective problem in P space
as [10]

S(k) = SP (k)

(
1 − 2πi

|〈φQ|HQP |�+
P 〉|2

E − εQ − A(E)

)
, (22)

where |�+
P 〉 are scattering eigenstates of HPP , and SP (k) is

the direct scattering matrix describing the scattering process
in P space in the absence of coupling to Q space.

The complex energy shift A(E) describes the dressing of
the bare bound state |φQ〉 by the coupling to the P space and
is represented by

A(E) =
〈
φQ|HQP

1

E+ − HPP

HPQ|φQ

〉
, (23)

where E+ = E + iδ with δ approaching zero from positive
values. Usually the open channel propagator [E+ − HPP ]−1

is expanded to a complete set of eigenstates of HPP , where
the dominant contribution comes from scattering states. To cir-
cumvent the use of scattering states we expand the propagator
to Gamow resonance states, which leads to a Mittag-Leffler
expansion [27]

1

E+ − HPP

= µ

h̄2

∞∑
n=1

|�n〉
〈
�D

n

∣∣
kn(k − kn)

, (24)

where n runs over all poles of the SP matrix. The Gamow state
|�n〉 is an eigenstate ofHPP with eigenvalue εPn

= h̄2k2
n/(2µ).

Correspondingly, the dual state |�D
n 〉 ≡ |�n〉∗ is an eigenstate

of H†
PP with eigenvalue (εPn

)∗. Using these dual states, the
Gamow states form a biorthogonal set such that 〈�D

n |�n′ 〉 =
δnn′ . For bound state poles kn = iκn, where κn > 0, Gamow
states correspond to properly normalized bound states.

We assume the scattering in the open channel is dominated
by a single bound state (kn = iκP ). This allows us to write the
direct scattering matrix in Eq. (22) as

SP (k) = e−2ikabg = e−2ikaP
bg

κP − ik

κP + ik
, (25)

where abg is the open channel scattering length, and the P -
channel background scattering length aP

bg is on the order of
the range of the interaction potential, aP

bg ≈ r0. Since we only
have to consider one bound state pole (with energy εP ) in P
space, the Mittag-Leffler series Eq. (24) is reduced to only one
term. Therefore, the complex energy shift Eq. (23) reduces to

A(E) = µ

h̄2

−iA

κP (k − iκP )
, (26)

where A ≡ 〈φQ|HQP |�P 〉〈�D
P |HPQ|φQ〉 is a positive con-

stant. The coupling matrix element between open channel
bound state and closed channel bound state responsible for
the Feshbach resonance is related to A.

The complex energy shift can be decomposed into a real
and an imaginary part such that A(E) = 
res(E) − i

2�(E).
For energies E > 0 the unperturbed bound state becomes a
quasibound state: its energy undergoes a shift 
res and acquires
a finite width �. For energies below the open channel threshold,
i.e., E < 0, A(E) is purely real and �(E) = 0. In the low-
energy limit, k → 0, Eq. (26) reduces to

A(E) = 
 − iCk, (27)

where C is a constant characterizing the coupling strength
between P and Q space [10], given by C = A(2κP |εP |)−1 and

 = A(2|εP |)−1. Note that if the direct interaction is resonant,
|abg|  r0, the energy dependence of the complex energy
shift is given by [28] A(E) = 
 − iCk(1 + ikaP )−1, where
aP = κ−1

P , yielding an energy dependence of the resonance
shift.

Since we consider one open channel, the (elastic) S-matrix
element can be written as e2iδ(k), where δ(k) is the scattering
phase shift. The scattering length, defined as the limit a ≡
− tan δ(k)/k (k → 0), is found to be Eq. (3) which shows
the well-known dispersive behavior. The direct scattering
process is described by the scattering length abg = aP

bg + aP .
At magnetic field value B0, where the dressed bound state
crosses the threshold of the entrance channel, the scattering
length has a singularity.

The dressed state can be considered as a (quasi)bound state
of the total scattering system. The energy of these states is
obtained by finding the poles of the total S matrix Eq. (22).
This results in solving

(k − iκP )[E − εQ − A(E)] = 0 (28)

for k. Due to the underlying assumptions, this equation is valid
only for energies around threshold where the open and closed
channel poles dominate. Near threshold, the shifted energy of
the uncoupled molecular state, εQ + 
, can be approximated
by µrel(B − B0). This allows us to solve Eq. (28) for E, and
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FIG. 6. (Color online) Illustration of the threshold behavior in a
(fictitious) two-channel version of the dressed ABM. The threshold
behavior is determined by the coupling between the least bound level
in the open channel in P space and the resonant bound level in
Q space. The uncoupled levels are shown as the blue (εP ) and red
(εQ) dash-dotted lines, with εQ crossing the threshold at B̃0. The solid
black lines represent the dressed levels, with the upper branch crossing
the threshold at B0. Near the threshold, the dressed level shows the
characteristic quadratic dependence on (B − B0) (see inset). For pure
ABM levels (dotted gray) no threshold effects occur and the coupled
bound state crosses the threshold at B ′

0.

we readily obtain

E = −
(

2|εP |3/2µrel(B − B0)

A

)2

, (29)

retrieving the characteristic quadratic threshold behavior of
the dressed level as a function of (B − B0). The energy
dependence of the molecular state close to resonance is also
given by E = −h̄2/(2µa2). This allows us to express the field
width of the resonance as 
B = C(abgµrel)−1.

We apply the above Feshbach theory to a (fictitious)
two-channel version of the ABM, and the results are shown
in Fig. 6. This two-channel system is represented by a
symmetric 2 × 2 Hamiltonian matrix, where there is only one
open and one closed channel. The open and closed channel
binding energies εP (εQ) are given by the diagonal matrix
elements, while the coupling is represented by the (identical)
off-diagonal matrix elements. The closed channel bound state
is made linearly dependent on the magnetic field, while the
coupling is taken constant. In addition to εP and εQ, we plot the
corresponding ABM solution, which in this case is equivalent
to a typical two-level avoided crossing solution. The figure now
nicely illustrates the evolution from the ABM to the dressed
ABM approach, where the latter solutions are found from the
two physical solutions of Eq. (28), which are also plotted. Since
the dressed ABM solutions account for threshold effects, they
show the characteristic quadratic bending toward threshold as
a function of magnetic field. From this curvature the resonance
width can be deduced.

C. The dressed asymptotic-bound-state model

To illustrate the presented model for a realistic case, we will
discuss the 6Li-40K system prepared in the |fLimfLi ,fKmfK〉 =
|1/2, + 1/2,9/2, − 7/2〉 two-body hyperfine state as an ex-
ample throughout this section. This particular mixture is

the energetically lowest spin combination of the MF = −3
manifold, allowing us to consider only one open channel. We
note that the model can be utilized in cases containing more
open channels.

In order to calculate the width of a Feshbach resonance
using the method presented in Sec. IV B, three quantities are
required: the binding energy of the open channel, εP , of the
closed channel responsible for the Feshbach resonance, εQ,
and the coupling matrix element K between the two channels.
In the following we will describe how to obtain these quantities
from the ABM by two simple basis transformations.

For ultracold collisions the hyperfine and Zeeman inter-
actions determine the threshold of the various channels and
thus the partitioning of the Hilbert space into subspaces P
and Q, and therefore a natural basis for our tailored Feshbach
formalism consists of the eigenstates of Hint. Experimentally
a system is prepared in an eigenstate |αβ〉 of the internal
Hamiltonian Hint, which we refer to as the entrance channel
(cf. Sec. II A). Performing a basis transformation from the |σ 〉
basis to the pair basis |αβ〉 allows us to identify the open and
closed channel subspaces. The open channel has the same spin
structure as the entrance channel.

We now perform a second basis transformation which
diagonalizes within Q space without affecting P space.
We obtain the eigenstates of HQQ and are able to iden-
tify the bound state responsible for a particular Feshbach
resonance. The bare bound states of Q space are defined
as {|φQ1〉,|φQ2〉, . . .} with binding energies {εQ1 ,εQ2 , . . .}.
For the one-dimensional P space, which is unaltered by
this transformation, the bare bound state |�P 〉 of HPP is
readily identified with the binding energy εP . In the basis
of eigenstates of HPP and HQQ, we easily find the coupling
matrix elements between the ith Q space bound state and
the open channel bound state 〈φQi

|HQP |�P 〉. This gives the
coupling constant Ai = 〈φQi

|HQP |�P 〉〈�D
P |HPQ|φQi

〉 = K2

that determines the resonance field B0 by solving Eq. (28) at
threshold,

εQi
εP = K2

2
. (30)

The field width of this Feshbach resonance is proportional
to the magnetic field difference between the crossings of the
dressed (B0) and uncoupledQ bound states (B̃0) with threshold
since


B = aP

abg
(B0 − B̃0) = 1

abg

K2

2κP |εP |µrel

. (31)

We illustrate the dressed ABM for 6Li-40K in Figs. 7 and 8,
for MF = −3. To demonstrate the effect of HPQ, we plotted
for comparison both the uncoupled and dressed bound states.3

Details of near-threshold behavior (gray shaded area in Fig. 7)
are shown in Fig. 8 together with the obtained scattering length.
We solved the pole equation of the total S matrix Eq. (28)
for each Q state and plotted only the physical solutions that
cause Feshbach resonances. The dressed bound states show the
characteristic quadratic bending near the threshold. We have
used C6 to determine r0 (≈ aP

bg) from Eq. (16).

3For clarity only one of the two physical solutions is shown.
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continuum

FIG. 7. (Color online) Dressed bound states for 6Li-40K for MF =
−3 (black lines; see also Table I). The uncoupled Q and P bound
states (HPQ = HQP = 0) are represented by the dot-dashed lines (red
and blue, respectively). The gray shaded area is shown in detail in
Fig. 8.

Table I summarizes the results of the dressed ABM for
the 6Li-40K mixture. Note that the position of the Feshbach
resonances will be slightly different compared to the results
from the regular ABM, for equal values of εS,0

ν . Therefore, we
have again performed a χ2 analysis and we found new values of
the binding energies ε0/h = 713 MHz and ε1/h = 425 MHz,
which yield a lower χ2 minimum as compared to the regular
ABM calculation.

The obtained value of 
B generally underestimates the
field width of a resonance. This originates from the fact that
only the dominant bound state pole corresponding to aP has
been taken into account. By including the pole of the dominant
virtual state in the Mittag-Leffler expansion, the coupling
between the open and closed channels will increase, and hence,

B will increase.

FIG. 8. (Color online) A zoom of the dressed ABM as shown
in Fig. 7. The dressed molecular states are shown near threshold
(black). The field width of a resonance is related to the magnetic field
difference between where the dressed and uncoupled Q bound states
cross the threshold.

TABLE I. The positions of all experimentally observed s-wave
Feshbach resonances of 6Li-40K. Column 2 gives the 6Li (mfLi )
and 40K (mfK ) hyperfine states. For all resonances fLi = 1/2 and
fK = 9/2. Note that the experimental width of the loss feature 
Bexpt

is not the same as the field width 
B of the scattering length
singularity. Feshbach resonance positions B0 and widths 
B for
6Li-40K as obtained by the dressed ABM, obtained by minimizing χ2.
The last two columns show the results of full coupled-channel (CC)
calculations. All magnetic fields are given in gauss. The experimental
and CC values for MF < 0 and MF > 0 are taken from Refs. [8]
and [9], respectively. The resonances marked with ∗ have also been
studied in Refs. [29,30].

Experiment ABM+ CC

MF mfLi ,mfK B0 
Bexpt B0 
B B0 
B

−5 − 1
2 , − 9

2 215.6 1.7 216.2 0.16 215.6 0.25

−4 + 1
2 , − 9

2 157.6 1.7 157.6 0.08 158.2 0.15

−4 + 1
2 , − 9

2 168.2∗ 1.2 168.5 0.08 168.2 0.10

−3 + 1
2 , − 7

2 149.2 1.2 149.1 0.12 150.2 0.28

−3 + 1
2 , − 7

2 159.5 1.7 159.7 0.31 159.6 0.45

−3 + 1
2 , − 7

2 165.9 0.6 165.9 0.0002 165.9 0.001

−2 + 1
2 , − 5

2 141.7 1.4 141.4 0.12 143.0 0.36

−2 + 1
2 , − 5

2 154.9∗ 2.0 154.8 0.50 155.1 0.81

−2 + 1
2 , − 5

2 162.7 1.7 162.6 0.07 162.9 0.60

+5 + 1
2 , + 9

2 114.47(5) 1.5(5) 115.9 0.91 114.78 1.82

V. SUMMARY AND CONCLUSION

We have presented a model to accurately describe Fes-
hbach resonances. The model allows for fast and accurate
prediction of resonance positions and widths with very little
experimental input. The reduction of the basis to only a few
states allows us to describe Feshbach resonances in a large
variety of systems without accurate knowledge of scattering
potentials.

Using the ABM in combination with the accumulated phase
method allows a description of Feshbach resonances in alkali-
metal systems with a large degree of accuracy, using only three
input parameters. Additionally, the fast computational time of
the model allows us to map all available Feshbach resonances
in a system and select the optimal resonance required to
perform a certain experiment. For the 6Li-40K mixture we
have utilized this ability to find a broad resonance as presented
in Ref. [9]. In addition, locating, e.g., overlapping resonances
in multicomponent (spin) mixtures can be performed easily
using the ABM.

An additional important feature is that the model can be
stepwise extended to include more phenomena allowing more
complex systems described. For example, a possible extension
would be to include the contribution of the dominant virtual
state in the Mittag-Leffler expansion; this would allow for
an accurate description of the resonance widths for systems
with a large and negative abg. Additionally, inclusion of the
dipole-dipole interaction allows a description of systems where
Feshbach resonances occur due to dipole-dipole coupling.
Finally, it has already been shown by Tscherbul et al. [31]
that the ABM can be successfully extended by including
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coupling to bound states by means of an externally applied
radio-frequency field.

The approach as described in the ABM is in prin-
ciple not limited to two-body systems. Magnetic-field-
induced resonances in, e.g., dimer-dimer scattering have
already been experimentally observed [32]. For few-body
systems an approach without having to solve the coupled
radial Schrödinger equations is very favorable. This large

variety of unexplored features illustrate the richness of the
model.
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