67 research outputs found

    Focal Osteolysis at the Junctions of a Modular Stainless-Steel Femoral Intramedullary Nail

    Get PDF
    Background: During routine follow-up of patients treated with a three-piece stainless-steel modular femoral nail, osteolysis and periosteal reaction around the modular junctions of some of the nails were noted on radiographs. The purpose of this study was to evaluate the prevalence, etiology, and clinical relevance of these radiographic findings. Methods: Forty-four femoral fractures or nonunions in forty-two patients were treated with a modular stainless-steel femoral intramedullary nail. Seventeen nails were excluded, leaving twenty-seven intramedullary nails in twenty-seven patients for this study. All patients had had a femoral diaphyseal fracture; nineteen had had an acute fracture and eight, a nonunion. These twenty-seven patients returned for radiographs, a physical examination, assessment of functional outcomes, assessment of thigh pain with a visual analog scale, determination of serum chromium levels, and nail removal if desired. A control group of sixteen patients treated with a one-piece stainless-steel femoral intramedullary nail was evaluated with use of the same outcome measures and was compared with the group treated with the modular femoral nail with regard to prevalence of thigh pain and serum chromium levels. Twelve modular femoral nails were removed according to the study protocol. The modular nail junctions were analyzed for corrosion products, and histopathologic analysis of tissue specimens from the femoral canal was performed. Results: The twenty-seven patients were seen at a mean of twenty-one months after fracture fixation; twenty-six of the twenty-seven fractures healed. Twenty-three femora had at least one of three types of abnormalitiesæosteolysis, periosteal reaction, or cortical thickeningælocalized to one or both modular junctions. Eighteen patients had severe reactions, defined as osteolysis of 2 mm, cortical thickening of 5 mm, and/or a periosteal reaction (group 1). Nine patients had mild or no reactions (group 2). Serum chromium levels in group 1 (mean, 1.27 ng/mL; range, 0.34 to 3.12 ng/mL) were twice as high as those in group 2 (mean, 0.53 ng/mL; range, 0.12 to 1.26 ng/mL). However, this difference did not reach significance with the numbers available. The differences in serum chromium levels between group 1 and the control group with a one-piece nail (mean, 0.26 ng/mL; range, 0.015 to 1.25 ng/mL) (p \u3c 0.01) and a control group without an implant (mean, 0.05 ng/mL; range, 0.015 to 0.25 ng/mL) (p \u3c 0.01) were significant. The level of thigh pain recorded on the visual analog scale was also significantly different between group 1 and the control group with a one-piece implant (p = 0.03). Retrieved modular nails had signs of fretting corrosion as well as stainless-steel corrosion products adherent to the junction where the osteolysis occurred. Histologic and spectrographic analysis revealed two types of corrosion products that were consistent with stainless-steel within the peri-implant tissue and were associated with a foreign-body granulomatous response. Conclusions: The presence of corrosion products at the taper junctions suggests that particulate debris was a major factor in the etiology of the radiographic findings of osteolysis, periosteal reaction, and cortical thickening. Serum chromium levels were substantially elevated in the patients with a modular femoral nail, and such levels may serve as a marker of fretting corrosion of these devices

    Mapping alterations to the endogenous elemental distribution within the lateral ventricles and choroid plexus in brain disorders using X-ray fluorescence imaging

    Get PDF
    The choroid plexus and cerebral ventricles are critical structures for the production of cerebral spinal fluid (CSF) and play an important role in regulating ion and metal transport in the brain, however many aspects of its roles in normal physiology and disease states, such as psychiatric illness, remain unknown. The choroid plexus is difficult to examine in vivo, and in situ ex vivo, and as such has typically been examined indirectly with radiolabeled tracers or ex vivo stains, making measurements of the endogenous K+, Cl-, and Ca+ distributions unreliable. In the present study, we directly examined the distribution of endogenous ions and biologically relevant transition metals in the choroid plexus and regions surrounding the ventricles (ventricle wall, cortex, corpus callosum, striatum) using X-ray fluorescence imaging (XFI). We find that the choroid plexus was rich in Cl- and Fe while K+ levels increase further from the ventricle as Cl- levels decrease, consistent with the known role of ion transporters in the choroid plexus CSF production. A polyI:C offspring displayed enlarged ventricles, elevated Cl- surrounding the ventricles, and intraventricular calcifications. These observations fit with clinical findings in patients with schizophrenia and suggest maternal treatment with polyI:C may lead to dysfunctional ion regulation in offspring. This study demonstrates the power of XFI for examining the endogenous elemental distributions of the ventricular system in healthy brain tissue as well as disease models

    Turnover rate of cerebrospinal fluid in female sheep: changes related to different light-dark cycles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sheep are seasonal breeders. The key factor governing seasonal changes in the reproductive activity of the ewe is increased negative feedback of estradiol at the level of the hypothalamus under long-day conditions. It has previously been demonstrated that when gonadotropin secretions are inhibited during long days, there is a higher concentration of estradiol in the cerebrospinal fluid (CSF) than during short days. This suggests an involvement of the CSF and choroid plexus in the neuroendocrine regulatory loop, but the mechanisms underlying this phenomenon remain unknown. One possible explanation of this difference in hormonal content is an effect of concentration or dilution caused by variations in CSF secretion rate. The aim of this study was thus to investigate changes in the CSF turnover rate related to light-dark cycles.</p> <p>Methods</p> <p>The turnover rate of the CSF was estimated by measuring the time taken for the recovery of intraventricular pressure (IVP) after removal of a moderate volume (0.5 to 2 ml) of CSF (slope in mmHg/min). The turnover rate was estimated three times in the same group of sheep: during a natural period of decreasing day-length corresponding to the initial period when gonadotropin activity is stimulated (SG1), during a long-day inhibitory period (IG), and finally during a short-day stimulatory period (SG2).</p> <p>Results</p> <p>The time taken and the speed of recovery of initial IVP differed between groups: 8 min 30 sec, 0.63 ± 0.07 mmHg/min(SG1), 11 min 1 sec, 0.38 ± 0.06 mmHg/min (IG) and 9 min 0 sec, 0.72 ± 0.15 mmHg/min (SG2). Time changes of IVP differed between groups (ANOVA, p < 0.005, SG1 different from IG, <it>p </it>< 0.05). The turnover rate in SG2: 183.16 ± 23.82 μl/min was not significantly different from SG1: 169. 23 ± 51.58 μl/min (Mann-Whitney test, <it>p </it>= 0.41), but was significantly different from IG: 71.33 ± 16.59 μl/min (<it>p </it>= 0.016).</p> <p>Conclusion</p> <p>This study shows that the turnover rate of CSF in ewes changes according to the light-dark cycle; it is increased during short day periods and reduced in long day periods. This phenomenon could account for differences in hormonal concentrations in the CSF in this seasonal species.</p

    Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this recordThere is another record in ORE for this publication: http://hdl.handle.net/10871/33419The choroid plexus epithelium (CPE) secretes higher volumes of fluid (cerebrospinal fluid, CSF) than any other epithelium and simultaneously functions as the blood-CSF barrier to gate immune cell entry into the central nervous system. Posthemorrhagic hydrocephalus (PHH), an expansion of the cerebral ventricles due to CSF accumulation following intraventricular hemorrhage (IVH), is a common disease usually treated by suboptimal CSF shunting techniques. PHH is classically attributed to primary impairments in CSF reabsorption, but little experimental evidence supports this concept. In contrast, the potential contribution of CSF secretion to PHH has received little attention. In a rat model of PHH, we demonstrate that IVH causes a Toll-like receptor 4 (TLR4)- and NF-κB-dependent inflammatory response in the CPE that is associated with a ∼3-fold increase in bumetanide-sensitive CSF secretion. IVH-induced hypersecretion of CSF is mediated by TLR4-dependent activation of the Ste20-type stress kinase SPAK, which binds, phosphorylates, and stimulates the NKCC1 co-transporter at the CPE apical membrane. Genetic depletion of TLR4 or SPAK normalizes hyperactive CSF secretion rates and reduces PHH symptoms, as does treatment with drugs that antagonize TLR4-NF-κB signaling or the SPAK-NKCC1 co-transporter complex. These data uncover a previously unrecognized contribution of CSF hypersecretion to the pathogenesis of PHH, demonstrate a new role for TLRs in regulation of the internal brain milieu, and identify a kinase-regulated mechanism of CSF secretion that could be targeted by repurposed US Food and Drug Administration (FDA)-approved drugs to treat hydrocephalus.We thank D.R. Alessi (Dundee) and R.P. Lifton (Rockefeller) for their support. K.T.K. is supported by the March of Dimes Basil O'Connor Award, a Simons Foundation SFARI Grant, the Hydrocephalus Association Innovator Award, and the NIH (4K12NS080223-05). J.M.S. is supported by the National Institute of Neurological Disorders and Stroke (NINDS) (NS060801; NS061808) and the US Department of Veterans Affairs (1BX002889); R.M. is supported by the Howard Hughes Medical Institute

    Glucose Transporter 1 and Monocarboxylate Transporters 1, 2, and 4 Localization within the Glial Cells of Shark Blood-Brain-Barriers

    Get PDF
    Although previous studies showed that glucose is used to support the metabolic activity of the cartilaginous fish brain, the distribution and expression levels of glucose transporter (GLUT) isoforms remained undetermined. Optic/ultrastructural immunohistochemistry approaches were used to determine the expression of GLUT1 in the glial blood-brain barrier (gBBB). GLUT1 was observed solely in glial cells; it was primarily located in end-feet processes of the gBBB. Western blot analysis showed a protein with a molecular mass of 50 kDa, and partial sequencing confirmed GLUT1 identity. Similar approaches were used to demonstrate increased GLUT1 polarization to both apical and basolateral membranes in choroid plexus epithelial cells. To explore monocarboxylate transporter (MCT) involvement in shark brain metabolism, the expression of MCTs was analyzed. MCT1, 2 and 4 were expressed in endothelial cells; however, only MCT1 and MCT4 were present in glial cells. In neurons, MCT2 was localized at the cell membrane whereas MCT1 was detected within mitochondria. Previous studies demonstrated that hypoxia modified GLUT and MCT expression in mammalian brain cells, which was mediated by the transcription factor, hypoxia inducible factor-1. Similarly, we observed that hypoxia modified MCT1 cellular distribution and MCT4 expression in shark telencephalic area and brain stem, confirming the role of these transporters in hypoxia adaptation. Finally, using three-dimensional ultrastructural microscopy, the interaction between glial end-feet and leaky blood vessels of shark brain was assessed in the present study. These data suggested that the brains of shark may take up glucose from blood using a different mechanism than that used by mammalian brains, which may induce astrocyte-neuron lactate shuttling and metabolic coupling as observed in mammalian brain. Our data suggested that the structural conditions and expression patterns of GLUT1, MCT1, MCT2 and MCT4 in shark brain may establish the molecular foundation of metabolic coupling between glia and neurons

    Analysis of the effects of sex hormone background on the rat choroid plexus transcriptome by cDNA microarrays

    Get PDF
    The choroid plexus (CP) are highly vascularized branched structures that protrude into the ventricles of the brain, and form a unique interface between the blood and the cerebrospinal fluid (CSF), the blood-CSF barrier, that are the main site of production and secretion of CSF. Sex hormones are widely recognized as neuroprotective agents against several neurodegenerative diseases, and the presence of sex hormones cognate receptors suggest that it may be a target for these hormones. In an effort to provide further insight into the neuroprotective mechanisms triggered by sex hormones we analyzed gene expression differences in the CP of female and male rats subjected to gonadectomy, using microarray technology. In gonadectomized female and male animals, 3045 genes were differentially expressed by 1.5-fold change, compared to sham controls. Analysis of the CP transcriptome showed that the top-five pathways significantly regulated by the sex hormone background are olfactory transduction, taste transduction, metabolism, steroid hormone biosynthesis and circadian rhythm pathways. These results represent the first overview of global expression changes in CP of female and male rats induced by gonadectomy and suggest that sex hormones are implicated in pathways with central roles in CP functions and CSF homeostasis

    Abstracts from the 20th International Symposium on Signal Transduction at the Blood-Brain Barriers

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/138963/1/12987_2017_Article_71.pd

    Glikoproteina P w barierze krew-mozg a wrazliwosc na iwermektyne

    No full text
    International audienc
    corecore