15,792 research outputs found

    The neural basis of unwanted thoughts during resting state.

    Get PDF
    Human beings are constantly engaged in thought. Sometimes thoughts occur repetitively and can become distressing. Up to now the neural bases of these intrusive or unwanted thoughts is largely unexplored. To study the neural correlates of unwanted thoughts, we acquired resting-state fMRI data of 41 female healthy subjects and assessed the self-reported amount of unwanted thoughts during measurement. We analyzed local connectivity by means of regional homogeneity (ReHo) and functional connectivity of a seed region. More unwanted thoughts (state) were associated with lower ReHo in right dorsolateral prefrontal cortex (DLPFC) and higher ReHo in left striatum (putamen). Additional seed-based analysis revealed higher functional connectivity of the left striatum with left inferior frontal gyrus (IFG) in participants reporting more unwanted thoughts. The state-dependent higher connectivty in left striatum was positively correlated with rumination assessed with a dedicated questionnaire focussing on trait aspects. Unwanted thoughts are associated with activity in the fronto-striatal brain circuitry. The reduction of local connectivity in DLPFC could reflect deficiencies in thought suppression processes, whereas the hightened activity in left striatum could imply an imbalance of gating mechanisms housed in basal ganglia. Its functional connectivity to left IFG is discussed as the result of thought-related speech processes

    An Optimization Model for the Banana Northern Prawn Fishery

    Get PDF
    This study presents an optimal control model of the Banana Northern Prawn Fishery, one of the most important fisheries in Australia. The life cycle of this species involves migration between the sea, where the catch takes place, and the estuary, where post-larvae and juveniles develop. The model combines a stage-matrix population dynamics model and an economic model of sustainable catch. The controls involve the amount of effort allowed and the length of the fishing season. Life stages are defined in terms of prawn size, allowing catch revenue to be adjusted to the expected proportion of specific sized classes caught in a particular month of the year, hence providing a more realistic projection of profits when price is influenced by size. The model is calibrated based on 18 years of detailed catch data.fisheries management, Australia, optimal control, profit maximisation, banana prawns., Resource /Energy Economics and Policy,

    Theory of continuum percolation II. Mean field theory

    Full text link
    I use a previously introduced mapping between the continuum percolation model and the Potts fluid to derive a mean field theory of continuum percolation systems. This is done by introducing a new variational principle, the basis of which has to be taken, for now, as heuristic. The critical exponents obtained are β=1\beta= 1, γ=1\gamma= 1 and ν=0.5\nu = 0.5, which are identical with the mean field exponents of lattice percolation. The critical density in this approximation is \rho_c = 1/\ve where \ve = \int d \x \, p(\x) \{ \exp [- v(\x)/kT] - 1 \}. p(\x) is the binding probability of two particles separated by \x and v(\x) is their interaction potential.Comment: 25 pages, Late

    Quantum theory of intersubband polarons

    Get PDF
    We present a microscopic quantum theory of intersubband polarons, quasiparticles originated from the coupling between intersubband transitions and longitudinal optical phonons. To this aim we develop a second quantized theory taking into account both the Fr\"ohlich interaction between phonons and intersubband transitions and the Coulomb interaction between the intersubband transitions themselves. Our results show that the coupling between the phonons and the intersubband transitions is extremely intense, thanks both to the collective nature of the intersubband excitations and to the natural tight confinement of optical phonons. Not only the coupling is strong enough to spectroscopically resolve the resonant splitting between the modes (strong coupling regime), but it can become comparable to the bare frequency of the excitations (ultrastrong coupling regime). We thus predict the possibility to exploit intersubband polarons both for applied optoelectronic research, where a precise control of the phonon resonances is needed, and also to observe fundamental quantum vacuum physics, typical of the ultrastrong coupling regime

    Nonequilibrium critical scaling from quantum thermodynamics

    Get PDF
    The emerging field of quantum thermodynamics is contributing important results and insights into archetypal many-body problems, including quantum phase transitions. Still, the question whether out-of-equilibrium quantities, such as fluctuations of work, exhibit critical scaling after a sudden quench in a closed system has remained elusive. Here, we take a novel approach to the problem by studying a quench across an impurity quantum critical point. By performing density matrix renormalization group computations on the two-impurity Kondo model, we are able to establish that the irreversible work produced in a quench exhibits finite-size scaling at quantum criticality. This scaling faithfully predicts the equilibrium critical exponents for the crossover length and the order parameter of the model, and, moreover, implies a new exponent for the rescaled irreversible work. By connecting the irreversible work to the two-impurity spin correlation function, our findings can be tested experimentally.Comment: 6 pages, 4 figure

    Quantum model of microcavity intersubband electroluminescent devices

    Get PDF
    We present a quantum theoretical analysis of the electroluminescence from an intersubband transition of a quantum well structure embedded in a planar microcavity. By using a cluster factorization method, we have derived a closed set of dynamical equations for the quantum well carrier and cavity photon occupation numbers, the correlation between the cavity field and the intersubband polarization, as well as polarization-polarization contributions. In order to model the electrical excitation, we have considered electron population tunneling from an injector and into an extractor contact. The tunneling rates have been obtained by considering the bare electronic states in the quantum well and the limit of validity of this approximation (broad-band injection) are discussed in detail. We apply the present quantum model to provide a comprehensive description of the electronic transport and optical properties of an intersubband microcavity light emitting diode, accounting for non-radiative carrier relaxation and Pauli blocking. We study the enhancement of the electroluminescence quantum efficiency passing from the weak to the strong polariton coupling regime.Comment: Published as Phys. Rev. B 77, 155321 (2008

    Mechanics of tubular meshes formed by elastic helical fibers

    Get PDF
    Tubular structures made of elastic helical fibers are widely found in nature and in technology. The complex and highly nonlinear mechanical properties of such assemblies have been understood either through minimal models or through complex simulations describing each individual fiber and their interactions. Here, inspired by Chebyshev’s geometric model of nets, we propose and experimentally validate a modeling framework that treats tubular braided meshes as continuum surfaces corresponding to the virtual envelope defined by the fibers. The key idea is to relate surface geometry and fiber kinematics, enabling us to follow large deformations. This theory is amenable to efficient computations and, in axisymmetric cases, the problem reduces to finding two scalar fields defined over 1D segments. We validate our model against experiments of axial compression, revealing the existence of a plateau with vanishing stiffness in the axial force–displacement curve, a feature that could prove particularly useful in applications where an applied compressive force needs to be held constant even against settlements of the compressed object

    A Renormalization Proof of the KAM Theorem for Non-Analytic Perturbations

    Full text link
    We shall use a Renormalization Group (RG) scheme in order to prove the classical KAM result in the case of a non-analytic perturbation (the latter will be assumed to have continuous derivatives up to a sufficiently large order). We shall proceed by solving a sequence of problems in which the perturbations are analytic approximations of the original one. We shall finally show that the sequence of the approximate solutions will converge to a differentiable solution of the original problem.Comment: 33 pages, no figure

    Glycolaldehyde in Perseus young solar analogs

    Get PDF
    Aims: In this paper we focus on the occurrence of glycolaldehyde (HCOCH2OH) in young solar analogs by performing the first homogeneous and unbiased study of this molecule in the Class 0 protostars of the nearby Perseus star forming region. Methods: We obtained sub-arcsec angular resolution maps at 1.3mm and 1.4mm of glycolaldehyde emission lines using the IRAM Plateau de Bure (PdB) interferometer in the framework of the CALYPSO IRAM large program. Results: Glycolaldehyde has been detected towards 3 Class 0 and 1 Class I protostars out of the 13 continuum sources targeted in Perseus: NGC1333-IRAS2A1, NGC1333-IRAS4A2, NGC1333-IRAS4B1, and SVS13-A. The NGC1333 star forming region looks particularly glycolaldehyde rich, with a rate of occurrence up to 60%. The glycolaldehyde spatial distribution overlaps with the continuum one, tracing the inner 100 au around the protostar. A large number of lines (up to 18), with upper-level energies Eu from 37 K up to 375 K has been detected. We derived column densities > 10^15 cm^-2 and rotational temperatures Trot between 115 K and 236 K, imaging for the first time hot-corinos around NGC1333-IRAS4B1 and SVS13-A. Conclusions: In multiple systems glycolaldehyde emission is detected only in one component. The case of the SVS13-A+B and IRAS4-A1+A2 systems support that the detection of glycolaldehyde (at least in the present Perseus sample) indicates older protostars (i.e. SVS13-A and IRAS4-A2), evolved enough to develop the hot-corino region (i.e. 100 K in the inner 100 au). However, only two systems do not allow us to firmly conclude whether the primary factor leading to the detection of glycolaldehyde emission is the environments hosting the protostars, evolution (e.g. low value of Lsubmm/Lint), or accretion luminosity (high Lint).Comment: A&A, in pres
    • …
    corecore