5,908 research outputs found

    Aeroheating Measurements of BOLT Aerodynamic Fairings and Transition Module

    Get PDF
    The Air Force Office of Scientific Research (AFOSR) has sponsored the Boundary Layer Transition (BOLT) Experiments to investigate hypersonic boundary layer transition on a low-curvature, concave surface with swept leading edges. This paper presents aeroheating measurements on a subscale model of the BOLT Flight Geometry, aerodynamic fairings, and Transition Module (TSM) in the NASA Langley 20-Inch Mach 6 Air Tunnel. The purpose of the test was to investigate and identify any areas of localized heating on the TSM for inclusion in the BOLT Critical Design Review (CDR). Surface heating distributions were measured using global phosphor thermography, and data were obtained for a range of model attitudes and free stream Reynolds numbers. Measurements showed low heating on the fairings and TSM. Additional analysis was completed after the CDR to compare heating on the TSM for the nominal BOLT vehicle reentry angle-of-attack with heating on the TSM for possible reentry angle-of-attack excursions. The results of this analysis were used in conjunction with thermal analyses from Johns Hopkins Applied Physics Lab (JHU/APL) and the Air Force Research Laboratory (AFRL) to assess the need for thermal protection on the flight vehicle TSM

    Human urine decreases function and expression of type 1 pili in uropathogenic Escherichia coli

    Get PDF
    Uropathogenic Escherichia coli (UPEC) is the primary cause of community-acquired urinary tract infections (UTIs). UPEC bind the bladder using type 1 pili, encoded by the fim operon in nearly all E. coli. Assembled type 1 pili terminate in the FimH adhesin, which specifically binds to mannosylated glycoproteins on the bladder epithelium. Expression of type 1 pili is regulated in part by phase-variable inversion of the genomic element containing the fimS promoter, resulting in phase ON (expressing) and OFF (nonexpressing) orientations. Type 1 pili are essential for virulence in murine models of UTI; however, studies of urine samples from human UTI patients demonstrate variable expression of type 1 pili. We provide insight into this paradox by showing that human urine specifically inhibits both expression and function of type 1 pili. Growth in urine induces the fimS phase OFF orientation, preventing fim expression. Urine also contains inhibitors of FimH function, and this inhibition leads to a further bias in fimS orientation toward the phase OFF state. The dual effect of urine on fimS regulation and FimH binding presents a potential barrier to type 1 pilus-mediated colonization and invasion of the bladder epithelium. However, FimH-mediated attachment to human bladder cells during growth in urine reverses these effects such that fim expression remains ON and/or turns ON. Interestingly, FimH inhibitors called mannosides also induce the fimS phase OFF orientation. Thus, the transduction of FimH protein attachment or inhibition into epigenetic regulation of type 1 pilus expression has important implications for the development of therapeutics targeting FimH function

    Coral disease time series highlight size-dependent risk and other drivers of white syndrome in a multi-species model

    Get PDF
    Coral diseases contribute to the decline of reef communities, but factors that lead to disease are difficult to detect. In the present study, we develop a multi-species model of colony-scale risk for the class of coral diseases referred to as White Syndromes, investigating the role of current or past conditions, including both environmental stressors and biological drivers at the colony and community scales. Investigating 7 years of coral survey data at five sites in Guam we identify multiple environmental and ecological associations with White Syndrome, including a negative relationship between short-term heat stress and White Syndrome occurrence, and strong evidence of increasing size-dependent White Syndrome risk across coral species. Our findings result in a generalized model used to predict colony-scale White Syndrome risk for multiple species, highlighting the value of long-term monitoring efforts to detect drivers of coral disease

    Now You See It, Now You Don't: The Disappearing Central Engine of the Quasar J1011+5442

    Full text link
    We report the discovery of a new "changing-look" quasar, SDSS J101152.98+544206.4, through repeat spectroscopy from the Time Domain Spectroscopic Survey. This is an addition to a small but growing set of quasars whose blue continua and broad optical emission lines have been observed to decline by a large factor on a time scale of approximately a decade. The 5100 Angstrom monochromatic continuum luminosity of this quasar drops by a factor of > 9.8 in a rest-frame time interval of < 9.7 years, while the broad H-alpha luminosity drops by a factor of 55 in the same amount of time. The width of the broad H-alpha line increases in the dim state such that the black hole mass derived from the appropriate single-epoch scaling relation agrees between the two epochs within a factor of 3. The fluxes of the narrow emission lines do not appear to change between epochs. The light curve obtained by the Catalina Sky Survey suggests that the transition occurs within a rest-frame time interval of approximately 500 days. We examine three possible mechanisms for this transition suggested in the recent literature. An abrupt change in the reddening towards the central engine is disfavored by the substantial difference between the timescale to obscure the central engine and the observed timescale of the transition. A decaying tidal disruption flare is consistent with the decay rate of the light curve but not with the prolonged bright state preceding the decay, nor can this scenario provide the power required by the luminosities of the emission lines. An abrupt drop in the accretion rate onto the supermassive black hole appears to be the most plausible explanation for the rapid dimming.Comment: Submitted to MNRA

    Measurement of the Neutron Lifetime by Counting Trapped Protons

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    Overview of Boundary Layer Transition Research in Support of Orbiter Return To Flight

    Get PDF
    A predictive tool for estimating the onset of boundary layer transition resulting from damage to and/or repair of the thermal protection system was developed in support of Shuttle Return to Flight. The boundary layer transition tool is part of a suite of tools that analyze the aerothermodynamic environment to the local thermal protection system to allow informed disposition of damage for making recommendations to fly as is or to repair. Using mission specific trajectory information and details of each damage site or repair, the expected time (and thus Mach number) at transition onset is predicted to help define the aerothermodynamic environment to use in the subsequent thermal and stress analysis of the local thermal protection system and structure. The boundary layer transition criteria utilized for the tool was developed from ground-based measurements to account for the effect of both protuberances and cavities and has been calibrated against select flight data. Computed local boundary layer edge conditions were used to correlate the results, specifically the momentum thickness Reynolds number over the edge Mach number and the boundary layer thickness. For the initial Return to Flight mission, STS-114, empirical curve coefficients of 27, 100, and 900 were selected to predict transition onset for protuberances based on height, and cavities based on depth and length, respectively

    Measurement of the Neutron Lifetime by Counting Trapped Protons

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    Towards an Understanding of Changing-Look Quasars: An Archival Spectroscopic Search in SDSS

    Full text link
    The uncertain origin of the recently-discovered `changing-looking' quasar phenomenon -- in which a luminous quasar dims significantly to a quiescent state in repeat spectroscopy over ~10 year timescales -- may present unexpected challenges to our understanding of quasar accretion. To better understand this phenomenon, we take a first step to building a sample of changing-look quasars with a systematic but simple archival search for these objects in the Sloan Digital Sky Survey Data Release 12. By leveraging the >10 year baselines for objects with repeat spectroscopy, we uncover two new changing-look quasars, and a third discovered previously. Decomposition of the multi-epoch spectra and analysis of the broad emission lines suggest that the quasar accretion disk emission dims due to rapidly decreasing accretion rates (by factors of >2.5), while disfavoring changes in intrinsic dust extinction for the two objects where these analyses are possible. Broad emission line energetics also support intrinsic dimming of quasar emission as the origin for this phenomenon rather than transient tidal disruption events or supernovae. Although our search criteria included quasars at all redshifts and transitions from either quasar-like to galaxy-like states or the reverse, all of the clear cases of changing-look quasars discovered were at relatively low-redshift (z ~ 0.2 - 0.3) and only exhibit quasar-like to galaxy-like transitions.Comment: 15 pages, 8 figures. Updated to accepted versio
    corecore