research

Aeroheating Measurements of BOLT Aerodynamic Fairings and Transition Module

Abstract

The Air Force Office of Scientific Research (AFOSR) has sponsored the Boundary Layer Transition (BOLT) Experiments to investigate hypersonic boundary layer transition on a low-curvature, concave surface with swept leading edges. This paper presents aeroheating measurements on a subscale model of the BOLT Flight Geometry, aerodynamic fairings, and Transition Module (TSM) in the NASA Langley 20-Inch Mach 6 Air Tunnel. The purpose of the test was to investigate and identify any areas of localized heating on the TSM for inclusion in the BOLT Critical Design Review (CDR). Surface heating distributions were measured using global phosphor thermography, and data were obtained for a range of model attitudes and free stream Reynolds numbers. Measurements showed low heating on the fairings and TSM. Additional analysis was completed after the CDR to compare heating on the TSM for the nominal BOLT vehicle reentry angle-of-attack with heating on the TSM for possible reentry angle-of-attack excursions. The results of this analysis were used in conjunction with thermal analyses from Johns Hopkins Applied Physics Lab (JHU/APL) and the Air Force Research Laboratory (AFRL) to assess the need for thermal protection on the flight vehicle TSM

    Similar works