125 research outputs found

    The infinitesimal characters of discrete series for real spherical spaces

    Get PDF
    Let Z=G/HZ=G/H be the homogeneous space of a real reductive group and a unimodular real spherical subgroup, and consider the regular representation of GG on L2(Z)L^2(Z). It is shown that all representations of the discrete series, that is, the irreducible subrepresentations of L2(Z)L^2(Z), have infinitesimal characters which are real and belong to a lattice. Moreover, let KK be a maximal compact subgroup of GG. Then each irreducible representation of KK occurs in a finite set of such discrete series representations only. Similar results are obtained for the twisted discrete series, that is, the discrete components of the space of square integrable sections of a line bundle, given by a unitary character on an abelian extension of HH.Comment: To appear in GAF

    KK-invariant cusp forms for reductive symmetric spaces of split rank one

    Get PDF
    Let G/HG/H be a reductive symmetric space of split rank 11 and let KK be a maximal compact subgroup of GG. In a previous article the first two authors introduced a notion of cusp forms for G/HG/H. We show that the space of cusp forms coincides with the closure of the KK-finite generalized matrix coefficients of discrete series representations if and only if there exist no KK-spherical discrete series representations. Moreover, we prove that every KK-spherical discrete series representation occurs with multiplicity 11 in the Plancherel decomposition of G/HG/H.Comment: 12 page

    Topological Hochschild homology of Thom spectra and the free loop space

    Full text link
    We describe the topological Hochschild homology of ring spectra that arise as Thom spectra for loop maps f: X->BF, where BF denotes the classifying space for stable spherical fibrations. To do this, we consider symmetric monoidal models of the category of spaces over BF and corresponding strong symmetric monoidal Thom spectrum functors. Our main result identifies the topological Hochschild homology as the Thom spectrum of a certain stable bundle over the free loop space L(BX). This leads to explicit calculations of the topological Hochschild homology for a large class of ring spectra, including all of the classical cobordism spectra MO, MSO, MU, etc., and the Eilenberg-Mac Lane spectra HZ/p and HZ.Comment: 58 page

    A Paley-Wiener theorem for Harish-Chandra modules

    Full text link
    We formulate and prove a Paley-Wiener theorem for Harish-Chandra modules for a real reductive group. As a corollary we obtain a new and elementary proof of the Helgason conjecture.Comment: Submitted version; with two appendices on the Helgason conjecture and an applicatio

    Ellipticity and discrete series

    Full text link
    We explain by elementary means why the existence of a discrete series representation of a real reductive group GG implies the existence of a compact Cartan subgroup of GG. The presented approach has the potential to generalize to real spherical spaces

    The Asymptotic distribution of circles in the orbits of Kleinian groups

    Full text link
    Let P be a locally finite circle packing in the plane invariant under a non-elementary Kleinian group Gamma and with finitely many Gamma-orbits. When Gamma is geometrically finite, we construct an explicit Borel measure on the plane which describes the asymptotic distribution of small circles in P, assuming that either the critical exponent of Gamma is strictly bigger than 1 or P does not contain an infinite bouquet of tangent circles glued at a parabolic fixed point of Gamma. Our construction also works for P invariant under a geometrically infinite group Gamma, provided Gamma admits a finite Bowen-Margulis-Sullivan measure and the Gamma-skinning size of P is finite. Some concrete circle packings to which our result applies include Apollonian circle packings, Sierpinski curves, Schottky dances, etc.Comment: 31 pages, 8 figures. Final version. To appear in Inventiones Mat

    On the algebraic K-theory of the complex K-theory spectrum

    Full text link
    Let p>3 be a prime, let ku be the connective complex K-theory spectrum, and let K(ku) be the algebraic K-theory spectrum of ku. We study the p-primary homotopy type of the spectrum K(ku) by computing its mod (p,v_1) homotopy groups. We show that up to a finite summand, these groups form a finitely generated free module over a polynomial algebra F_p[b], where b is a class of degree 2p+2 defined as a higher Bott element.Comment: Revised and expanded version, 42 pages

    Positive model structures for abstract symmetric spectra

    Get PDF
    We give a general method of constructing positive stable model structures for symmetric spectra over an abstract simplicial symmetric monoidal model category. The method is based on systematic localization, in Hirschhorn’s sense, of a certain positive projective model structure on spectra, where positivity basically means the truncation of the zero level. The localization is by the set of stabilizing morphisms or their truncated version
    corecore