1,031 research outputs found

    Entrepreneurial Options for Protecting Intellectual Property

    Get PDF

    Phase-space correlations of chaotic eigenstates

    Full text link
    It is shown that the Husimi representations of chaotic eigenstates are strongly correlated along classical trajectories. These correlations extend across the whole system size and, unlike the corresponding eigenfunction correlations in configuration space, they persist in the semiclassical limit. A quantitative theory is developed on the basis of Gaussian wavepacket dynamics and random-matrix arguments. The role of symmetries is discussed for the example of time-reversal invariance.Comment: Published version with minor corrections to version

    Trace identities and their semiclassical implications

    Full text link
    The compatibility of the semiclassical quantization of area-preserving maps with some exact identities which follow from the unitarity of the quantum evolution operator is discussed. The quantum identities involve relations between traces of powers of the evolution operator. For classically {\it integrable} maps, the semiclassical approximation is shown to be compatible with the trace identities. This is done by the identification of stationary phase manifolds which give the main contributions to the result. The same technique is not applicable for {\it chaotic} maps, and the compatibility of the semiclassical theory in this case remains unsettled. The compatibility of the semiclassical quantization with the trace identities demonstrates the crucial importance of non-diagonal contributions.Comment: LaTeX - IOP styl

    Can One Hear the Shape of a Graph?

    Full text link
    We show that the spectrum of the Schrodinger operator on a finite, metric graph determines uniquely the connectivity matrix and the bond lengths, provided that the lengths are non-commensurate and the connectivity is simple (no parallel bonds between vertices and no loops connecting a vertex to itself). That is, one can hear the shape of the graph! We also consider a related inversion problem: A compact graph can be converted into a scattering system by attaching to its vertices leads to infinity. We show that the scattering phase determines uniquely the compact part of the graph, under similar conditions as above.Comment: 9 pages, 1 figur

    Spin-Boson Hamiltonian and Optical Absorption of Molecular Dimers

    Get PDF
    An analysis of the eigenstates of a symmetry-broken spin-boson Hamiltonian is performed by computing Bloch and Husimi projections. The eigenstate analysis is combined with the calculation of absorption bands of asymmetric dimer configurations constituted by monomers with nonidentical excitation energies and optical transition matrix elements. Absorption bands with regular and irregular fine structures are obtained and related to the transition from the coexistence to a mixing of adiabatic branches in the spectrum. It is shown that correlations between spin states allow for an interpolation between absorption bands for different optical asymmetries.Comment: 15 pages, revTeX, 8 figures, accepted for publication in Phys. Rev.

    Scars on quantum networks ignore the Lyapunov exponent

    Full text link
    We show that enhanced wavefunction localization due to the presence of short unstable orbits and strong scarring can rely on completely different mechanisms. Specifically we find that in quantum networks the shortest and most stable orbits do not support visible scars, although they are responsible for enhanced localization in the majority of the eigenstates. Scarring orbits are selected by a criterion which does not involve the classical Lyapunov exponent. We obtain predictions for the energies of visible scars and the distributions of scarring strengths and inverse participation ratios.Comment: 5 pages, 2 figure

    Periodic-Orbit Theory of Anderson Localization on Graphs

    Full text link
    We present the first quantum system where Anderson localization is completely described within periodic-orbit theory. The model is a quantum graph analogous to an a-periodic Kronig-Penney model in one dimension. The exact expression for the probability to return of an initially localized state is computed in terms of classical trajectories. It saturates to a finite value due to localization, while the diagonal approximation decays diffusively. Our theory is based on the identification of families of isometric orbits. The coherent periodic-orbit sums within these families, and the summation over all families are performed analytically using advanced combinatorial methods.Comment: 4 pages, 3 figures, RevTe

    Transport and dynamics on open quantum graphs

    Full text link
    We study the classical limit of quantum mechanics on graphs by introducing a Wigner function for graphs. The classical dynamics is compared to the quantum dynamics obtained from the propagator. In particular we consider extended open graphs whose classical dynamics generate a diffusion process. The transport properties of the classical system are revealed in the scattering resonances and in the time evolution of the quantum system.Comment: 42 pages, 13 figures, submitted to PR

    Eigenstate Structure in Graphs and Disordered Lattices

    Full text link
    We study wave function structure for quantum graphs in the chaotic and disordered regime, using measures such as the wave function intensity distribution and the inverse participation ratio. The result is much less ergodicity than expected from random matrix theory, even though the spectral statistics are in agreement with random matrix predictions. Instead, analytical calculations based on short-time semiclassical behavior correctly describe the eigenstate structure.Comment: 4 pages, including 2 figure

    Spectral Statistics in Chaotic Systems with Two Identical Connected Cells

    Full text link
    Chaotic systems that decompose into two cells connected only by a narrow channel exhibit characteristic deviations of their quantum spectral statistics from the canonical random-matrix ensembles. The equilibration between the cells introduces an additional classical time scale that is manifest also in the spectral form factor. If the two cells are related by a spatial symmetry, the spectrum shows doublets, reflected in the form factor as a positive peak around the Heisenberg time. We combine a semiclassical analysis with an independent random-matrix approach to the doublet splittings to obtain the form factor on all time (energy) scales. Its only free parameter is the characteristic time of exchange between the cells in units of the Heisenberg time.Comment: 37 pages, 15 figures, changed content, additional autho
    • …
    corecore