The compatibility of the semiclassical quantization of area-preserving maps
with some exact identities which follow from the unitarity of the quantum
evolution operator is discussed. The quantum identities involve relations
between traces of powers of the evolution operator. For classically {\it
integrable} maps, the semiclassical approximation is shown to be compatible
with the trace identities. This is done by the identification of stationary
phase manifolds which give the main contributions to the result. The same
technique is not applicable for {\it chaotic} maps, and the compatibility of
the semiclassical theory in this case remains unsettled. The compatibility of
the semiclassical quantization with the trace identities demonstrates the
crucial importance of non-diagonal contributions.Comment: LaTeX - IOP styl