852 research outputs found

    Curative pelvic exenteration for recurrent cervical carcinoma in the era of concurrent chemotherapy and radiation therapy. A systematic review

    No full text
    International audienceOBJECTIVE: Pelvic exenteration requires complete resection of the tumor with negative margins to be considered a curative surgery. The purpose of this review is to assess the optimal preoperative evaluation and surgical approach in patients with recurrent cervical cancer to increase the chances of achieving a curative surgery with decreased morbidity and mortality in the era of concurrent chemoradiotherapy. METHODS: Review of English publications pertaining to cervical cancer within the last 25 years were included using PubMed and Cochrane Library searches. RESULTS: Modern imaging (MRI and PET-CT) does not accurately identify local extension of microscopic disease and is inadequate for preoperative planning of extent of resection. Today, only half of pelvic exenteration procedures obtain uninvolved surgical margins. CONCLUSION: Clear margins are required for curative pelvic exenterations, but are poorly predictable by pre-operative assessment. More extensive surgery, i.e. the infra-elevator exenteration with vulvectomy, is a logical surgical choice to increase the rate of clear margins and to improve patient survival following surgery for recurrent cervical carcinoma

    Control of a Biped Robot by Total Rate of Angular Momentum Using the Task Function Approach

    Get PDF
    In this work we address the control problem of biped robots by using the task function approach. A problem arrives when one of the feet is in contact with the ground, which presents imperfections. There is then the possibility that the biped robot undergoes a fall. It is difficult to track any trajectory due to the presence of unevenness on the ground. What we propose is to use the task function approach combined with the application of the total rate of angular momentum to obtain a control law for the ankle. By this technique, the tracking becomes more smooth and the balance is assured. The control law proposed allows the upper part of the robot to be controlled independently since only the ankle actuators are concerned. We enounce the formal problem and present some simulations with real parameters of a 21 degrees of freedom biped robot

    Status of maturation of critical technologies and systems design: Breeding blanket

    Get PDF
    The scope of the EUFOfusion Work Package Breeding Blanket is to develop a blanket concept for the EU DEMO reactor; this includes the blanket segments inside the Vacuum Vessel and the related Tritium Extraction/Removal Systems. In the Pre-Concept Design (PCD) Phase, two concepts have been selected as candidates; a solid and a liquid breeder blanket cooled with helium and water, respectively. The design of these two blanket systems has been adapted to the DEMO plant design developed in the PCD Phase and performances assessed. A large R&D programme has been implemented with the scope to evaluate different technologies for these blankets; including the development of breeders, tritium extraction and cooling technologies, and the manufacturing of the blanket system. A major milestone in the subsequent Concept Design Phase is the final selection of the blanket concept for DEMO

    Anomaly detection search for new resonances decaying into a Higgs boson and a generic new particle X in hadronic final states using Formula Presented pp collisions with the ATLAS detector

    Get PDF
    A search is presented for a heavy resonance Formula Presented decaying into a Standard Model Higgs boson Formula Presented and a new particle Formula Presented in a fully hadronic final state. The full Large Hadron Collider run 2 dataset of proton-proton collisions at Formula Presented collected by the ATLAS detector from 2015 to 2018 is used and corresponds to an integrated luminosity of Formula Presented. The search targets the high Formula Presented-mass region, where the Formula Presented and Formula Presented have a significant Lorentz boost in the laboratory frame. A novel application of anomaly detection is used to define a general signal region, where events are selected solely because of their incompatibility with a learned background-only model. It is constructed using a jet-level tagger for signal-model-independent selection of the boosted Formula Presented particle, representing the first application of fully unsupervised machine learning to an ATLAS analysis. Two additional signal regions are implemented to target a benchmark Formula Presented decay into two quarks, covering topologies where the Formula Presented is reconstructed as either a single large-radius jet or two small-radius jets. The analysis selects Higgs boson decays into Formula Presented, and a dedicated neural-network-based tagger provides sensitivity to the boosted heavy-flavor topology. No significant excess of data over the expected background is observed, and the results are presented as upper limits on the production cross section Formula Presented) for signals with Formula Presented between 1.5 and 6 TeV and Formula Presented between 65 and 3000 GeV. A search is presented for a heavy resonance Y decaying into a Standard Model Higgs boson H and a new particle X in a fully hadronic final state. The full Large Hadron Collider run 2 dataset of proton-proton collisions at √ s = 13     TeV collected by the ATLAS detector from 2015 to 2018 is used and corresponds to an integrated luminosity of 139     fb − 1 . The search targets the high Y -mass region, where the H and X have a significant Lorentz boost in the laboratory frame. A novel application of anomaly detection is used to define a general signal region, where events are selected solely because of their incompatibility with a learned background-only model. It is constructed using a jet-level tagger for signal-model-independent selection of the boosted X particle, representing the first application of fully unsupervised machine learning to an ATLAS analysis. Two additional signal regions are implemented to target a benchmark X decay into two quarks, covering topologies where the X is reconstructed as either a single large-radius jet or two small-radius jets. The analysis selects Higgs boson decays into b ¯ b , and a dedicated neural-network-based tagger provides sensitivity to the boosted heavy-flavor topology. No significant excess of data over the expected background is observed, and the results are presented as upper limits on the production cross section σ ( p p → Y → X H → q ¯ q b ¯ b ) for signals with m Y between 1.5 and 6 TeV and m X between 65 and 3000 GeV

    Measurement of substructure-dependent jet suppression in Pb+Pb collisions at 5.02 TeV with the ATLAS detector

    Get PDF
    The ATLAS detector at the Large Hadron Collider has been used to measure jet substructure modification and suppression in Pb+Pb collisions at a nucleon–nucleon center-of-mass energy √sNN = 5.02 TeV in comparison with proton–proton (pp) collisions at √s = 5.02 TeV. The Pb+Pb data, collected in 2018, have an integrated luminosity of 1.72 nb−1, while the ppdata, collected in 2017, have an integrated luminosity of 260 pb−1. Jets used in this analysis are clustered using the anti-kt algorithm with a radius parameter R = 0.4. The jet constituents, defined by both tracking and calorimeter information, are used to determine the angular scale rg of the first hard splitting inside the jet by reclustering them using the Cambridge–Aachen algorithm and employing the soft-drop grooming technique. The nuclear modification factor, RAA, used to characterize jet suppression in Pb+Pb collisions, is presented differentially in rg, jet transverse momentum, and in intervals of collision centrality. The RAA value is observed to depend significantly on jet rg. Jets produced with the largest measured rg are found to be twice as suppressed as those with the smallest rg in central Pb+Pb collisions. The RAA values do not exhibit a strong variation with jet pT in any of the rg intervals. The rg and pT dependence of jet RAA is qualitatively consistent with a picture of jet quenching arising from coherence and provides the most direct evidence in support of this approach

    Studies of new Higgs boson interactions through nonresonant HH production in the b¯bγγ fnal state in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for nonresonant Higgs boson pair production in the b ¯bγγ fnal state is performed using 140 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. This analysis supersedes and expands upon the previous nonresonant ATLAS results in this fnal state based on the same data sample. The analysis strategy is optimised to probe anomalous values not only of the Higgs (H) boson self-coupling modifer κλ but also of the quartic HHV V (V = W, Z) coupling modifer κ2V . No signifcant excess above the expected background from Standard Model processes is observed. An observed upper limit µHH < 4.0 is set at 95% confdence level on the Higgs boson pair production cross-section normalised to its Standard Model prediction. The 95% confdence intervals for the coupling modifers are −1.4 < κλ < 6.9 and −0.5 < κ2V < 2.7, assuming all other Higgs boson couplings except the one under study are fxed to the Standard Model predictions. The results are interpreted in the Standard Model efective feld theory and Higgs efective feld theory frameworks in terms of constraints on the couplings of anomalous Higgs boson (self-)interactions

    Comparison of inclusive and photon-tagged jet suppression in 5.02 TeV Pb+Pb collisions with ATLAS

    Get PDF

    Searches for lepton-flavour-violating decays of the Higgs boson into eτ and μτ in \sqrt{s} = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    Abstract This paper presents direct searches for lepton flavour violation in Higgs boson decays, H → eτ and H → μτ, performed using data collected with the ATLAS detector at the LHC. The searches are based on a data sample of proton-proton collisions at a centre-of-mass energy s s \sqrt{s} = 13 TeV, corresponding to an integrated luminosity of 138 fb−1. Leptonic (τ → ℓνℓντ) and hadronic (τ → hadrons ντ) decays of the τ-lepton are considered. Two background estimation techniques are employed: the MC-template method, based on data-corrected simulation samples, and the Symmetry method, based on exploiting the symmetry between electrons and muons in the Standard Model backgrounds. No significant excess of events is observed and the results are interpreted as upper limits on lepton-flavour-violating branching ratios of the Higgs boson. The observed (expected) upper limits set on the branching ratios at 95% confidence level, B B \mathcal{B} (H → eτ) < 0.20% (0.12%) and B B \mathcal{B} (H → μτ ) < 0.18% (0.09%), are obtained with the MC-template method from a simultaneous measurement of potential H → eτ and H → μτ signals. The best-fit branching ratio difference, B B \mathcal{B} (H → μτ) → B B \mathcal{B} (H → eτ), measured with the Symmetry method in the channel where the τ-lepton decays to leptons, is (0.25 ± 0.10)%, compatible with a value of zero within 2.5σ
    corecore