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Abstract: In this work we address the control problem of biped robots by using the task function
approach. A problem arrives when one of the feet is in contact with the ground, which presents
imperfections. There is then the possibility that the biped robot undergoes a fall. It is difficult to track
any trajectory due to the presence of unevenness on the ground. What we propose is to use the task
function approach combined with the application of the total rate of angular momentum to obtain a
control law for the ankle. By this technique, the tracking becomes more smooth and the balance is
assured. The control law proposed allows the upper part of the robot to be controlled independently
since only the ankle actuators are concerned. We enounce the formal problem and present some
simulations with real parameters of a 21 degrees of freedom biped robot.
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INTRODUCTION

In this work we address the control problem of biped robots
by using the task function approach (Samson et al 1991).
One of the main problems arrives when one of the feet is
in contact with the ground, which presents imperfections,
when the other is flying. During the walking, while the
biped is ready to execute a step, one foot is in contact
over an imperfect surface and the other is going to take
off. If, at this moment, the biped keeps the ankle torques
computed from the reference trajectory without taking into
account that the supporting foot is neither in full contact
nor horizontal with the ground surface, the fall is inevitable.
Figure 1 shows the case for the static walking. In case (a),
the biped robot steps on a stone which makes the robot
losing its balance. In case (b) the torques and the robot
posture changed, mainly the ankle torques. As a result the
balance is kept since the center of mass of the robot projects
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vertically inside the convex hull formed geometrically by
the contact points of its feet (Wieber 2002). In the case
of dynamic walking, it is the zero moment point (ZMP)
(Goswami 1999, Sardain and Bessonnet 2004) which stays
inside the convex hull in order to keep the balance.

What we propose is to use the task function approach
combined with the application of the total rate of angular
momentum (Mitobe et al 2004, Kajita et al 2001, Sano
and Furusho 1990) to obtain a control law for the ankles.
The control law is developed in the task space (Spong
and Vidyasagar 1989) to regulate the system by means
of an output function (Wieber 2000a) following the task
function approach. The output function defines important
points in the task space like, among others, the position of
the center of mass of the robot and the points in the feet
that give information about the active constraints. These
active constraints show up when the contacts have taken
place. The tracking is made with the reference trajectory,
which is described in the task space.

By this technique, the tracking becomes more smooth
and the balance is assured. The control law proposed allows
the upper part of the robot to be controlled independently
since only the ankle actuators are concerned. Related work
is presented in Löffler et al (2002). In Section “Dynamics
of the biped robot”, we describe the biped robot dynamics,
the task function approach and the concept of the total rate
of angular momentum. In Section “The control law in the
task space”, we establish the law control in the task space.
Section “Numerical examples and simulations” is devoted
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Figure 1 (a) The lost of the balance, (b) the balance is kept.

to numerical examples and some simulations with real pa-
rameters of a 21 degrees of freedom (d.o.f.) biped robot. In
Section “Conclusions and future works”, conclusions and
future work are presented.

DYNAMICS OF THE BIPED ROBOT

The constrained model of the biped robot can be expressed
as a set of Euler–Lagrange equations, considering that the
articulated bodies are rigid. Particularly, the model of the
biped robot we address has been widely studied in Wieber
(2002) and Wieber (2000a), which is:

M(q)q̈ + N(q, q̇)q̇ + G(q) = T(q)u + C(q)Tλ (1)

where M ∈ �n×n is the inertia matrix, N ∈ �n×n is the
Coriolis and centrifugal forces matrix, G ∈ �n is the
gravity vector, T(q)u ∈ �n is the actuation forces vector
and C(q)Tλ ∈ �n represents the contact forces vector.
Specifically, C(q) is the Jacobian matrix of the set of
the normal and tangential constraints χnk(q) ≥ 0 and
χtk(q) = 0, where k represents the kth normal and tangen-
tial constraint, respectively, and λ is the vector of the asso-
ciated Lagrange multipliers. q ∈ �n represents the vector
of generalized coordinates. The vector q is composed of
15 actuated joint positions and a set of six variables which
describes the position and orientation of the biped robot in
the space.

The task function approach

The dynamics of the robot is constrained by the active
constraints χnk(q) ≥ 0 and χtk(q) = 0 as a result of the
contacts of the feet with the ground surface. The robot
position is expressed by the vector of the generalized co-
ordinates q in the joint space, but we need to know the
moments when the contact points of the feet take place
during the walking. To solve this problem we use the task
function approach (Wieber 2002) and we make a change
of variables to generate a C2 diffeomorphism κ(q) as an

output function to get the interest points like variables and
to regulate the system in the task space, so:

κ(q) =




κ1(q) = xG
κ2(q) = yG

...


 . (2)

Some components of this function represent the po-
sition on x, y and z of the center of mass of the robot,
(κ1, κ2, κ3), the positions and the orientations of the feet
(κ13, κ14, . . . , κ18). Using these variables it is possible to
know if a flat contact ground takes place. We are not going
to abound more about this topic, for further details, the
reader is referred to Wieber (2002) and Wieber (2000a).

The total rate of angular momentum

The total rate of angular momentum (δP ) is a physical
quantity that has been used for generating gaits on walking
systems (Mitobe et al 2004, Kajita et al 2001). The ZMP
techniques (Goswami 1999, Sardain and Bessonnet 2004)
or the techniques based on the contact forces (normal and
tangential) (Wieber 2002), both use the total rate of angular
momentum. The formal expression for the vector δP is
derived in function of the angular momentum (LP ) as:

δP = d
dt

LP (3)

and

LP =
∑

i

(
PGi × mi

d
dt

PGi + Ri Ii ωi

)
(4)

where Gi is the position of the center of gravity of the ith
link and PGi is the vector formed between P and Gi, mi is
the mass of the ith link, Ri is the orientation matrix of the
ith link frame, Ii and ωi are the inertia matrix and angular
velocity vector of the ith link frame, respectively. P, where
(xP , yP , zP ) are its coordinates, stands for the point where
the quantity is calculated. Equation (3) can be expressed
as:

δP =
∑
i=1

{Ri [Ii ω̇i − (Ii ωi ) × ωi ] + PGi × mi γ Gi }

(5)

where γGi represents the acceleration vector of the ith
link. As we are interested in the sagital and frontal plane,
equation (5) can be expressed as:

δPz =
∑
i=1

Ii xω̇i x +
∑
i=1

mi {(xi − xP )ÿi − (yi − yP )ẍi }

(6)

δPx =
∑
i=1

Ii zω̇i z +
∑
i=1

mi {(yi − yP )z̈i − (zi − zP )ÿi }

(7)

where (xi , yi , zi ) are the coordinates of each link. Figure 2
shows a scheme of the supporting foot illustrating the
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Figure 2 Scheme of the supporting foot illustrating the point
P where δP is calculated and the point C to show the ZMP
position.

point C for the ZMP and the point where δP is calculated.
The moment MP, with respect to an arbitrary point P, is
the sum of the moments due to inertial (i.e., opposite to
dynamic momentum) and gravitational forces. The whole
expression is:

MP =
∑
i=1

{Ri [−Ii ω̇i + (Ii ωi )×ωi ]−PGi ×mi · γGi }

+ (OG − OP) × (−mg · y) (8)

where G and m are the center of gravity and the mass of
the robot respectively, g stands for the acceleration due to
gravity. It is possible to find a point (C) , so-called ZMP,
underneath the foot-on-the-ground contact which makes
the moment MC zero, that is:

MC =
∑
i=1

{Ri [−Ii ω̇i + (Ii ωi )×ωi ]−PGi ×mi · γGi }

+ PG × (−mg · y) + PC × (mg · y + m · γG)

= 0. (9)

For simplicity the point P is located exactly below the
ankle joint. To derive the coordinates of the ZMP, we use
the expression:

PC = y × (δP + PG × mg · y)
m (g + ÿG)

. (10)

Since the biped robot moves, then we can express the
variation of the vector PC as:

P̃C = y × (δ̃P + P̃G × mg · y)
m (g + ÿG)

(11)

where


P̃C = PC − PCref

P̃G = PG − PGref

δ̃P = δP − δref
P .

(12)

We want that C ref = P and at the same time that
PGref × y = 0, so equation (11) becomes:

PC = y × (δ̃P + PG × mg · y)
m (g + ÿG)

. (13)

Then the point C with coordinates (ζx, 0, ζz) represents
the ZMP in function of the total rate of angular moment
δP , so from equation (13):

ζz = 1
m (g + ÿG)

[
(zG − zP )mg − δ̃Px

]
(14)

ζx = 1
m (g + ÿG)

[(xG − xP )mg + δ̃Pz]. (15)

A complete analysis has been made in Mitobe et al
(2004). On applying the fundamental principle of dynam-
ics, it is easy to prove that the term m (g + ÿG) represents
the normal contact forces. A control law based on this
technique uses the total rate of angular momentum as a
feedback signal to update the ankle torques. For that, we
have stated δP as:

δ̃Px = δPx − δref
Px (16)

δ̃Pz = δPz − δref
Pz

As a result, the balance is kept when there are irregular
terrain conditions and disturbances. In the next section, we
will aboard the general feedback control law for the robot
and we will use this part.

THE CONTROL LAW IN THE TASK SPACE

It was established in Section “Dynamics of the biped
robot”, that the biped robot dynamics is constrained by
the contacts of the feet with the ground as a result of walk-
ing. The solution of such a system is accomplished using
optimization techniques. In this case, the solution is treated
as a quadratic problem with linear constraints (Goswami
1999). So, the complete constrained dynamics can be stated
as the following set of equations:


M(q)q̈ + N(q, q̇)q̇ + G(q) = T(q)u + C(q)Tλ

Cn (q)q̈ + sn (q, q̇) ≥ 0
Ct (q)q̈ + st (q, q̇) = 0
�(λ) ≥ 0

(17)

where the second and third equations contain the Jaco-
bian matrices Cn (q) and Ct (q) of no penetration and no
slipping of the active constraints χ∗

n (q) = 0 and χ∗
t (q) = 0,

respectively, as well as the terms that result after derivation.
�(λ) is the matrix relating to the Lagrange multipliers. The
control law applied is divided into two parts: the control
law for all joints, others than those for the ankles (sagi-
tal and frontal), is based on the solution of the quadratic
problem defined by equation (17) and the one that is based
on the concept of the angular momentum, presented in
Section “Dynamics of the biped robot”, for the ankles
joints. Figure 3 shows the two controllers.
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Figure 3 The two controllers acting on the biped robot:
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Figure 4 The ankle torques are applied to each leg.

In Figure 4, the application of the ankle torques is rep-
resented. As it was stated in Section “The task function
approach”, the output function κ(q) allows to accomplish
the tracking in the task space. Now, we are interested in
the position error:

e(t) = κ(q(t)) − κd (qd (t)) (18)

ė(t) = H(q)q̇(t) − κ̇d (qd (t)) (19)

ë(t) = H(q)q̈(t) + h(q, q̇) − κ̈d (qd (t)) (20)

and if we assume that the tracking error of the elements of
the output function related to the active constraints become
zero after each contact, then we can assure that:

ë(q, q̇, q̈, t) = 0. (21)

So under this assumption, the asymptotic stability of
the reference trajectory is also assured. A straightforward

manipulation of equation (1) gives:

M(q)H(q)−1[v − h(q, q̇) + κ̈d (qd )]

+ N(q, q̇)q̇ + G(q) = T(q)u + C(qT)λ (22)

where v = ë represents the control law that makes the
error dynamics linear and decoupled, H(q) is the Jacobian
of κ(q), h(q, q̇) are the terms after derivation. Now, we
propose the control law (Wieber, 2000) in the task space
as:

v = −KP [κ(q) − κ(qd )] − KD[H(q)q̇ − κ̇d (qd )]

(23)

where κ̇d (qd ) and κ̈d (qd ) represent the velocity and the ac-
celeration of the reference trajectory, respectively, KP and
KD are diagonal matrices of proportional and derivative
gains, respectively. As we established above, the solution
of the quadratic problem, given by equation (17) satisfy-
ing the active constraints, gives the joint torques. Using
equation (20) we have that:

κ̈(q) = H(q)q̈ + h(q, q̇) = ë + κ̈d (qd ) (24)

then

κ̈(q) = v + κ̈d (qd ). (25)

In this case, the actual acceleration κ̈(q) in the task space
depends on the error. This is very important for the ap-
plication of the total rate of angular momentum technique
since the acceleration of the center of mass of the robot is
always available. If we state:

ẍG =
∑
i=1

ẍi , ÿG =
∑
i=1

ÿi , z̈G =
∑
i=1

z̈i

(26)

then the acceleration of the center of mass of the biped
robot represents the first three component of the vector:

κ̈(q) =




κ̈1(q) = ẍG(q)
κ̈2(q) = ÿG(q)
κ̈2(q) = z̈G(q)

...


 (27)

If it is defined FN = m (g + ÿG) as the normal contact
force and the tangential contact force is ignored, then, for
the calculation of the ankle torques, we use equations (6),
(7) and (14)–(16) which results in:

�x = FNζz
�z = FNζx .

(28)

Finally, the composed vector for the joint torques is
formed by two parts as it is shown in Figure 3.

NUMERICAL EXAMPLES AND SIMULATIONS

To show the application of our technique, we designed
a trajectory for the G in which the ZMP leaves of the
support foot area. This is shown in Figure 5 for the left foot.
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Figure 5 (a) The biped keeps the balance, (b) the biped falls.
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Figure 6 Effect on the trajectory of the center of mass G of
the robot when the technique is applied.

We compare the results of the two control schemas: the one
with the optimization and the other with our technique for
the ankle torques. We used a simulator (Wieber 2000b) for
the biped robot “Bip”.

From Figure 5, we can see that for the same G trajec-
tory, case (a) corresponds to our technique and the ZMP
trajectory keeps inside the support foot area, as a result the
balance is kept.

In case (b) the biped robot falls. In Figure 6 we can
see that due to the application of the control of angular
moment, the resulting G trajectory is displaced inside the
support foot area. In Figure 7, the resulting trajectories for
the ZMP and the center of mass are shown for the left foot.
In Figure 8, the resulting torques of the two controls are
shown. We can see that those of the optimization technique
become constants since approximately 0.92 seconds. This
happens because at this time, the control is unable to keep
the balance of the biped robot.
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Figure 7 Both, the G and ZMP resulting trajectories are
shown.
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(�6) calculated with both controllers.
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Figure 9 The values of δP for the sagital and frontal plane for
the left ankle.

In contrast, the proposed technique provides the torques
during the whole trajectory, keeping the balance of the
biped robot. Figure 9 shows what happens with the total
rate of angular momentum (δP ). The reference value for
δP used in the simulation phase was δP = 0 to keep the
balance.
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CONCLUSIONS AND FUTURE WORKS

In this work, a technique based on the on-line calculation
of the total rate of angular momentum was presented. This
physical quantity has been used to find the ankle torques
in order to avoid the fall of the biped robot when irregular
conditions are present on the ground surfaces during the
walking. The proposed technique is combined with the
solution of a quadratic problem with linear constraints to
obtain the complete vector of applied torques. It is neces-
sary to observe that only the ankle torques are calculated
with the technique of the total rate of angular momen-
tum. We take advantage of the task function approach to
propose a control law in the task space, which was used
to calculate the acceleration at each sample instant. With
the acceleration vector, the quantity δP was calculated as
well as the corresponding ankle torques. We consider that
the results are suitable for a biped robot of 105 kg and a
trajectory of short duration. It must be noticed that some
reference values gave suitable results even though some
mechanical limits could be attained. For this reason, the
interval of values of reference of the δP could be very
limited. As a future research, two subjects are considered:
the possibility of using a reference δP and at the same
time positioning the application point P other than just
below the ankle joint, that is, not in the ground surface,
and finding a scheme to make the calculation of the refer-
ence values of δP in function of the reference trajectory,
straightforwardly.
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