239 research outputs found

    Blow-up of the hyperbolic Burgers equation

    Full text link
    The memory effects on microscopic kinetic systems have been sometimes modelled by means of the introduction of second order time derivatives in the macroscopic hydrodynamic equations. One prototypical example is the hyperbolic modification of the Burgers equation, that has been introduced to clarify the interplay of hyperbolicity and nonlinear hydrodynamic evolution. Previous studies suggested the finite time blow-up of this equation, and here we present a rigorous proof of this fact

    On effective compactness and sigma-compactness

    Full text link
    Using the Gandy -- Harrington topology and other methods of effective descriptive set theory, we prove several theorems on compact and sigma-compact pointsets. In particular we show that any Σ11\Sigma^1_1 set AA of the Baire space NNN^N either is covered by a countable union of compact Δ11\Delta^1_1 sets, or AA contains a subset closed in NNN^N and homeomorphic to NNN^N (and then AA is not covered by a sigma-compact set, of course)

    Nonexistence of self-similar singularities for the 3D incompressible Euler equations

    Full text link
    We prove that there exists no self-similar finite time blowing up solution to the 3D incompressible Euler equations. By similar method we also show nonexistence of self-similar blowing up solutions to the divergence-free transport equation in Rn\Bbb R^n. This result has direct applications to the density dependent Euler equations, the Boussinesq system, and the quasi-geostrophic equations, for which we also show nonexistence of self-similar blowing up solutions.Comment: This version refines the previous one by relaxing the condition of compact support for the vorticit

    Continuous, Semi-discrete, and Fully Discretized Navier-Stokes Equations

    Full text link
    The Navier--Stokes equations are commonly used to model and to simulate flow phenomena. We introduce the basic equations and discuss the standard methods for the spatial and temporal discretization. We analyse the semi-discrete equations -- a semi-explicit nonlinear DAE -- in terms of the strangeness index and quantify the numerical difficulties in the fully discrete schemes, that are induced by the strangeness of the system. By analyzing the Kronecker index of the difference-algebraic equations, that represent commonly and successfully used time stepping schemes for the Navier--Stokes equations, we show that those time-integration schemes factually remove the strangeness. The theoretical considerations are backed and illustrated by numerical examples.Comment: 28 pages, 2 figure, code available under DOI: 10.5281/zenodo.998909, https://doi.org/10.5281/zenodo.99890

    Relative entropy and the stability of shocks and contact discontinuities for systems of conservation laws with non BV perturbations

    Full text link
    We develop a theory based on relative entropy to show the uniqueness and L^2 stability (up to a translation) of extremal entropic Rankine-Hugoniot discontinuities for systems of conservation laws (typically 1-shocks, n-shocks, 1-contact discontinuities and n-contact discontinuities of large amplitude) among bounded entropic weak solutions having an additional trace property. The existence of a convex entropy is needed. No BV estimate is needed on the weak solutions considered. The theory holds without smallness condition. The assumptions are quite general. For instance, strict hyperbolicity is not needed globally. For fluid mechanics, the theory handles solutions with vacuum.Comment: 29 page

    Four conjectures in Nonlinear Analysis

    Full text link
    In this chapter, I formulate four challenging conjectures in Nonlinear Analysis. More precisely: a conjecture on the Monge-Amp\`ere equation; a conjecture on an eigenvalue problem; a conjecture on a non-local problem; a conjecture on disconnectedness versus infinitely many solutions.Comment: arXiv admin note: text overlap with arXiv:1504.01010, arXiv:1409.5919, arXiv:1612.0819

    Global generalized solutions for Maxwell-alpha and Euler-alpha equations

    Full text link
    We study initial-boundary value problems for the Lagrangian averaged alpha models for the equations of motion for the corotational Maxwell and inviscid fluids in 2D and 3D. We show existence of (global in time) dissipative solutions to these problems. We also discuss the idea of dissipative solution in an abstract Hilbert space framework.Comment: 27 pages, to appear in Nonlinearit

    Weak-strong uniqueness property for the full Navier-Stokes-Fourier system

    Full text link
    The Navier-Stokes-Fourier system describing the motion of a compressible, viscous, and heat conducting fluid is known to possess global-in-time weak solutions for any initial data of finite energy. We show that a weak solution coincides with the strong solution, emanating from the same initial data, as long as the latter exists. In particular, strong solutions are unique within the class of weak solutions

    Relative entropies, suitable weak solutions, and weak strong uniqueness for the compressible Navier-Stokes system

    Full text link
    We introduce the notion of relative entropy for the weak solutions of the compressible Navier-Stokes system. We show that any finite energy weak solution satisfies a relative entropy inequality for any pair of sufficiently smooth test functions. As a corollary we establish weak-strong uniqueness principle for the compressible Navier-Stokes system

    Uniform regularity for the Navier-Stokes equation with Navier boundary condition

    Full text link
    We prove that there exists an interval of time which is uniform in the vanishing viscosity limit and for which the Navier-Stokes equation with Navier boundary condition has a strong solution. This solution is uniformly bounded in a conormal Sobolev space and has only one normal derivative bounded in LL^\infty. This allows to get the vanishing viscosity limit to the incompressible Euler system from a strong compactness argument
    corecore