18,484 research outputs found

    Landau degeneracy and black hole entropy

    Get PDF
    We consider the supergravity solution describing a configuration of intersecting D-4-branes with non-vanishing worldvolume gauge fields. The entropy of such a black hole is calculated in terms of the D-branes quantised charges. The non-extreme solution is also considered and the corresponding thermodynamical quantities are calculated in terms of a D-brane/anti-D-brane system. To perform the quantum mechanical D-brane analysis we study open-strings with their ends on branes with a magnetic condensate. Applying the results to our D-brane system we managed to have a perfect agreement between the D-brane entropy counting and the corresponding semi-classical result. The Landau degeneracy of the open string states describing the excitations of the D-brane system enters in a crucial way. We also derive the near-extreme results which agree with the semi-classical calculations.Comment: 30 pages, 1 figure, latex. Minor corrections, version to appear in Nuclear Physics

    Activation of Non-Local Quantum Resources

    Full text link
    We find two two-qubit states such that any number of copies of one state or the other cannot violate the CHSH Bell inequality. However, their tensor product can produce a CHSH violation of at least 2.023. We also identify a CHSH-local state such that two copies of it are CHSH-violating. The tools employed here can be easily adapted to find instances of non-locality activation in arbitrary Bell scenarios

    Opinion dynamics driven by leaders, media, viruses and worms

    Get PDF
    A model on the effects of leader, media, viruses, and worms and other agents on the opinion of individuals is developed and utilized to simulate the formation of consensus in society and price in market via excess between supply and demand. Effects of some time varying drives, (harmonic and hyperbolic) are also investigated. Key words: Opinion; Leader; Media; Market; Buyers; Sellers; ExcessComment: 14 pages, 7 figures (14, total) Will be published in IJMP

    The warp drive: hyper-fast travel within general relativity

    Full text link
    It is shown how, within the framework of general relativity and without the introduction of wormholes, it is possible to modify a spacetime in a way that allows a spaceship to travel with an arbitrarily large speed. By a purely local expansion of spacetime behind the spaceship and an opposite contraction in front of it, motion faster than the speed of light as seen by observers outside the disturbed region is possible. The resulting distortion is reminiscent of the ``warp drive'' of science fiction. However, just as it happens with wormholes, exotic matter will be needed in order to generate a distortion of spacetime like the one discussed here.Comment: 10 pages, 1 figure. Not previously available in gr-q

    The entropic origin of disassortativity in complex networks

    Full text link
    Why are most empirical networks, with the prominent exception of social ones, generically degree-degree anticorrelated, i.e. disassortative? With a view to answering this long-standing question, we define a general class of degree-degree correlated networks and obtain the associated Shannon entropy as a function of parameters. It turns out that the maximum entropy does not typically correspond to uncorrelated networks, but to either assortative (correlated) or disassortative (anticorrelated) ones. More specifically, for highly heterogeneous (scale-free) networks, the maximum entropy principle usually leads to disassortativity, providing a parsimonious explanation to the question above. Furthermore, by comparing the correlations measured in some real-world networks with those yielding maximum entropy for the same degree sequence, we find a remarkable agreement in various cases. Our approach provides a neutral model from which, in the absence of further knowledge regarding network evolution, one can obtain the expected value of correlations. In cases in which empirical observations deviate from the neutral predictions -- as happens in social networks -- one can then infer that there are specific correlating mechanisms at work.Comment: 4 pages, 4 figures. Accepted in Phys. Rev. Lett. (2010

    Neighborhood models of minority opinion spreading

    Get PDF
    We study the effect of finite size population in Galam's model [Eur. Phys. J. B 25 (2002) 403] of minority opinion spreading and introduce neighborhood models that account for local spatial effects. For systems of different sizes N, the time to reach consensus is shown to scale as ln N in the original version, while the evolution is much slower in the new neighborhood models. The threshold value of the initial concentration of minority supporters for the defeat of the initial majority, which is independent of N in Galam's model, goes to zero with growing system size in the neighborhood models. This is a consequence of the existence of a critical size for the growth of a local domain of minority supporters
    • …
    corecore