12,220 research outputs found

    Does responsibility affect the public valuation of health care interventions? A relative valuation approach to health care safety

    Get PDF
    This article is available open access through the publisher’s website at the link below. Copyright © 2012, International Society for Pharmacoeconomics and Outcomes Research (ISPOR).Objective - Health services often spend more on safety interventions than seems cost-effective. This study investigates whether the public value safety-related health care improvements more highly than the same improvements in contexts where the health care system is not responsible. Method - An online survey was conducted to elicit the relative importance placed on preventing harms caused by 1) health care (hospital-acquired infections, drug administration errors, injuries to health care staff), 2) individuals (personal lifestyle choices, sports-related injuries), and 3) nature (genetic disorders). Direct valuations were obtained from members of the public by using a person trade-off or “matching” method. Participants were asked to choose between two preventative interventions of equal cost and equal health benefit per person for the same number of people, but differing in causation. If participants indicated a preference, their strength of preference was measured by using person trade-off. Results - Responses were obtained from 1030 people, reflecting the sociodemographic mix of the UK population. Participants valued interventions preventing hospital-acquired infections (1.31) more highly than genetic disorders (1.0), although drug errors were valued similarly to genetic disorders (1.07), and interventions to prevent injury to health care staff were given less weight than genetic disorders (0.71). Less weight was also given to interventions related to lifestyle (0.65) and sports injuries (0.41). Conclusion - Our results suggest that people do not attach a simple fixed premium to “safety-related” interventions but that preferences depend more subtly on context. The use of the results of such public preference surveys to directly inform policy would therefore be premature.Brunel University

    Effectiveness of the ADEC as a level 2 screening test for young children with suspected autism spectrum disorders in a clinical setting

    Get PDF
    Background The Autism Detection in Early Childhood (ADEC) is a clinician-administered, Level 2 screening tool. A retrospective file audit was used to investigate its clinical effectiveness. Method Toddlers referred to an Australian child development service between 2008 and 2010 (N?=?53, M age?=?32.2 months) were screened with the ADEC. Their medical records were reviewed in 2013 when their mean age was 74.5 months, and the original ADEC screening results were compared with later diagnostic outcomes. Results The ADEC had good sensitivity (87.5%) and moderate specificity (62%). Three behaviours predicted autism spectrum disorders (ASDs): response to name, gaze switching, and gaze monitoring (p???.001). Conclusions The ADEC shows promise as a screening tool that can discriminate between young children with ASDs and those who have specific communication disorders or developmental delays that persist into middle childhood but who do not meet the criteria for ASDs

    Suppression of Kelvon-induced decay of quantized vortices in oblate Bose-Einstein Condensates

    Full text link
    We study the Kelvin mode excitations on a vortex line in a three-dimensional trapped Bose-Einstein condensate at finite temperature. Our stochastic Gross-Pitaevskii simulations show that the activation of these modes can be suppressed by tightening the confinement along the direction of the vortex line, leading to a strong suppression in the vortex decay rate as the system enters a regime of two-dimensional vortex dynamics. As the system approaches the condensation transition temperature we find that the vortex decay rate is strongly sensitive to dimensionality and temperature, observing a large enhancement for quasi-two-dimensional traps. Three-dimensional simulations of the recent vortex dipole decay experiment of Neely et al. [Phys. Rev. Lett. 104, 160401 (2010)] confirm two-dimensional vortex dynamics, and predict a dipole lifetime consistent with experimental observations and suppression of Kelvon-induced vortex decay in highly oblate condensates.Comment: 8 pages, 8 figure

    Stratified shear flow instabilities at large Richardson numbers

    Full text link
    Numerical simulations of stratified shear flow instabilities are performed in two dimensions in the Boussinesq limit. The density variation length scale is chosen to be four times smaller than the velocity variation length scale so that Holmboe or Kelvin-Helmholtz unstable modes are present depending on the choice of the global Richardson number Ri. Three different values of Ri were examined Ri =0.2, 2, 20. The flows for the three examined values are all unstable due to different modes namely: the Kelvin-Helmholtz mode for Ri=0.2, the first Holmboe mode for Ri=2, and the second Holmboe mode for Ri=20 that has been discovered recently and it is the first time that it is examined in the non-linear stage. It is found that the amplitude of the velocity perturbation of the second Holmboe mode at the non-linear stage is smaller but comparable to first Holmboe mode. The increase of the potential energy however due to the second Holmboe modes is greater than that of the first mode. The Kelvin-Helmholtz mode is larger by two orders of magnitude in kinetic energy than the Holmboe modes and about ten times larger in potential energy than the Holmboe modes. The results in this paper suggest that although mixing is suppressed at large Richardson numbers it is not negligible, and turbulent mixing processes in strongly stratified environments can not be excluded.Comment: Submitted to Physics of Fluid

    Universal method to extract the average electron spin relaxation in organic semiconductors from muonium ALC resonances

    Full text link
    Muon spin spectroscopy and in particular the avoid level crossing (ALC) technique is a sensitive probe of electron spin relaxation (eSR) in organic semiconductors. In complex ALC spectra, eSR can be challenging to extract, as it requires the modelling of overlapping ALCs, where covariance between parameters can result in significant uncertainties. Here we demonstrate a general method to extract eSR rate, which is independent on the number of ALCs resonances present, whether they overlap or not, and what the muonium hyperfine (isotropic and anisotropic) parameters are. This can then be used to extract an accurate value for eSR rate and as guidance for undertaking experiments efficientl
    corecore