102 research outputs found
Realistic Sensitivity Curves For Pulsar Timing Arrays
We construct realistic sensitivity curves for pulsar timing array searches for gravitational waves, incorporating both red and white noise contributions to individual pulsar noise spectra, and the effect of fitting to a pulsar timing model. We demonstrate the method on both simulated pulsars and a realistic array consisting of a subset of NANOGrav pulsars used in recent analyses. A comparison between the results presented here and measured upper limit curves from actual analyses shows agreement to tens of percent. The resulting sensitivity curves can be used to assess the detectability of predicted gravitational-wave signals in the nanohertz frequency band in a coherent, flexible, and computationally efficient manner
Realistic Sensitivity Curves For Pulsar Timing Arrays
We construct realistic sensitivity curves for pulsar timing array searches for gravitational waves, incorporating both red and white noise contributions to individual pulsar noise spectra, and the effect of fitting to a pulsar timing model. We demonstrate the method on both simulated pulsars and a realistic array consisting of a subset of NANOGrav pulsars used in recent analyses. A comparison between the results presented here and measured upper limit curves from actual analyses shows agreement to tens of percent. The resulting sensitivity curves can be used to assess the detectability of predicted gravitational-wave signals in the nanohertz frequency band in a coherent, flexible, and computationally efficient manner
The NANOGrav 11 Year Data Set: Pulsar-timing Constraints on the Stochastic Gravitational-wave Background
We search for an isotropic stochastic gravitational-wave background (GWB) in the newly released 11 year data set from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). While we find no evidence for a GWB, we place constraints on a population of inspiraling supermassive black hole (SMBH) binaries, a network of decaying cosmic strings, and a primordial GWB. For the first time, we find that the GWB constraints are sensitive to the solar system ephemeris (SSE) model used and that SSE errors can mimic a GWB signal. We developed an approach that bridges systematic SSE differences, producing the first pulsar-timing array (PTA) constraints that are robust against SSE errors. We thus place a 95% upper limit on the GW-strain amplitude of AGWB \u3c 1.45 × 10−15 at a frequency of f = 1 yr−1 for a fiducial f−2/3 power-law spectrum and with interpulsar correlations modeled. This is a factor of ~2 improvement over the NANOGrav nine-year limit calculated using the same procedure. Previous PTA upper limits on the GWB (as well as their astrophysical and cosmological interpretations) will need revision in light of SSE systematic errors. We use our constraints to characterize the combined influence on the GWB of the stellar mass density in galactic cores, the eccentricity of SMBH binaries, and SMBH–galactic-bulge scaling relationships. We constrain the cosmic-string tension using recent simulations, yielding an SSE-marginalized 95% upper limit of Gμ \u3c 5.3 × 10−11—a factor of ~2 better than the published NANOGrav nine-year constraints. Our SSE-marginalized 95% upper limit on the energy density of a primordial GWB (for a radiation-dominated post-inflation universe) is ΩGWB(f) h2 \u3c 3.4 × 10−10
The NANOGrav 11-Year Data Set: Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries
Observations indicate that nearly all galaxies contain supermassive black
holes (SMBHs) at their centers. When galaxies merge, their component black
holes form SMBH binaries (SMBHBs), which emit low-frequency gravitational waves
(GWs) that can be detected by pulsar timing arrays (PTAs). We have searched the
recently-released North American Nanohertz Observatory for Gravitational Waves
(NANOGrav) 11-year data set for GWs from individual SMBHBs in circular orbits.
As we did not find strong evidence for GWs in our data, we placed 95\% upper
limits on the strength of GWs from such sources as a function of GW frequency
and sky location. We placed a sky-averaged upper limit on the GW strain of at nHz. We also developed a
technique to determine the significance of a particular signal in each pulsar
using ``dropout' parameters as a way of identifying spurious signals in
measurements from individual pulsars. We used our upper limits on the GW strain
to place lower limits on the distances to individual SMBHBs. At the
most-sensitive sky location, we ruled out SMBHBs emitting GWs with
nHz within 120 Mpc for , and
within 5.5 Gpc for . We also determined that
there are no SMBHBs with emitting
GWs in the Virgo Cluster. Finally, we estimated the number of potentially
detectable sources given our current strain upper limits based on galaxies in
Two Micron All-Sky Survey (2MASS) and merger rates from the Illustris
cosmological simulation project. Only 34 out of 75,000 realizations of the
local Universe contained a detectable source, from which we concluded it was
unsurprising that we did not detect any individual sources given our current
sensitivity to GWs.Comment: 10 pages, 11 figures. Accepted by Astrophysical Journal. Please send
any comments/questions to S. J. Vigeland ([email protected]
- …