11,043 research outputs found

    BiSON data preparation: A correction for differential extinction and the weighted averaging of contemporaneous data

    Get PDF
    The Birmingham Solar Oscillations Network (BiSON) has provided high-quality high-cadence observations from as far back in time as 1978. These data must be calibrated from the raw observations into radial velocity and the quality of the calibration has a large impact on the signal-to-noise ratio of the final time series. The aim of this work is to maximise the potential science that can be performed with the BiSON data set by optimising the calibration procedure. To achieve better levels of signal-to-noise ratio we perform two key steps in the calibration process: we attempt a correction for terrestrial atmospheric differential extinction; and the resulting improvement in the calibration allows us to perform weighted averaging of contemporaneous data from different BiSON stations. The improvements listed produce significant improvement in the signal-to-noise ratio of the BiSON frequency-power spectrum across all frequency ranges. The reduction of noise in the power spectrum will allow future work to provide greater constraint on changes in the oscillation spectrum with solar activity. In addition, the analysis of the low-frequency region suggests we have achieved a noise level that may allow us to improve estimates of the upper limit of g-mode amplitudes.Comment: Accepted for publication in MNRAS; 10 pages, 7 figure

    Population structures in the SARA and SARB reference collections of Salmonella enterica according to MLST, MLEE and microarray hybridization

    Get PDF
    In the 1980's and 1990's, population genetic analyses based on Multilocus Enzyme Electrophoresis (MLEE) provided an initial overview of the genetic diversity of multiple bacterial species, including Salmonella enterica. The genetic diversity within S. enterica subspecies enterica according to MLEE is represented by the SARA and SARB reference collections, each consisting of 72 isolates, which have been extensively used for comparative analyses. MLEE has subsequently been replaced by Multilocus Sequence Typing (MLST). Our initial MLST results indicated that some strains within the SARB collection differed from their published descriptions. We therefore performed MLST on four versions of the SARB collection from different sources and one collection of SARA, and found that multiple isolates in SARB and SARA differ in serovar from their original description, and other SARB isolates differed between different sources. Comparisons with a global MLST database allowed a plausible reconstruction of the serovars of the original collection. MLEE, MLST and microarrays were largely concordant at recognizing closely related strains. MLST was particularly effective at recognizing discrete population genetic groupings while the two other methods provided hints of higher order relationships. However, quantitative pair-wise phylogenetic distances differed considerably between all three methods. Our results provide a translation dictionary from MLEE to MLST for the extant SARA and SARB collections which can facilitate genomic comparisons based on archival insights from MLEE

    Many-body effects on the capacitance of multilayers made from strongly correlated materials

    Full text link
    Recent work by Kopp and Mannhart on novel electronic systems formed at oxide interfaces has shown interesting effects on the capacitances of these devices. We employ inhomogeneous dynamical mean-field theory to calculate the capacitance of multilayered nanostructures. These multilayered nanostructures are composed of semi-infinite metallic leads coupled via a strongly correlated dielectric barrier region. The barrier region can be adjusted from a metallic regime to a Mott insulator through adjusting the interaction strength. We examine the effects of varying the barrier width, temperature, potential difference, screening length, and chemical potential. We find that the interaction strength has a relatively strong effect on the capacitance, while the potential and temperature show weaker dependence.Comment: 19 pages, 7 figures, REVTe

    Hot phonon decay in supported and suspended exfoliated graphene

    Get PDF
    Near infrared pump-probe spectroscopy has been used to measure the ultrafast dynamics of photoexcited charge carriers in monolayer and multilayer graphene. We observe two decay processes occurring on 100 fs and 2 ps timescales. The first is attributed to the rapid electron-phonon thermalisation in the system. The second timescale is found to be due to the slow decay of hot phonons. Using a simple theoretical model we calculate the hot phonon decay rate and show that it is significantly faster in monolayer flakes than in multilayer ones. In contrast to recent claims, we show that this enhanced decay rate is not due to the coupling to substrate phonons, since we have also seen the same effect in suspended flakes. Possible intrinsic decay mechanisms that could cause such an effect are discussed.Comment: 4 pages, 3 figure

    Evaluation of high temperature structural adhesives for extended service, phase 4

    Get PDF
    The evaluation of three phenylquinoxaline polymers as high temperature structural adhesives is presented. These included an experimental crisskubjabke oiktner (X-PQ) and two experimental materials (PPQ-2501) and (PPQ-HC). Lap shear, crack extension, and climing drum peel specimens were fabricated from all three polymers, and tested after thermal, combined thermal/humidity, and stressed Skydrol exposure. All three polymers generally performed well as adhesives at initial test temperatures from 219K (-67 F) to 505K (450 F) and after humidity exposure. The 644K (700 F) cured test specimens exhibited superior Skydrol resistance and thermal stability at 505K (450 F) when compared to the 602K (625 F) cured test specimens

    Performance of the Birmingham Solar-Oscillations Network (BiSON)

    Get PDF
    The Birmingham Solar-Oscillations Network (BiSON) has been operating with a full complement of six stations since 1992. Over 20 years later, we look back on the network history. The meta-data from the sites have been analysed to assess performance in terms of site insolation, with a brief look at the challenges that have been encountered over the years. We explain how the international community can gain easy access to the ever-growing dataset produced by the network, and finally look to the future of the network and the potential impact of nearly 25 years of technology miniaturisation.Comment: 31 pages, 19 figures. Accepted by Solar Physics: 2015 October 20. First online: 2015 December 7. Open Acces

    Strong nonlinear optical response of graphene flakes measured by four-wave mixing

    Get PDF
    We present the first experimental investigation of nonlinear optical properties of graphene flakes. We find that at near infrared frequencies a graphene monolayer exhibits a remarkably high third-order optical nonlinearity which is practically independent of the wavelengths of incident light. The nonlinear optical response can be utilized for imaging purposes, with image contrasts of graphene which are orders of magnitude higher than those obtained using linear microscopy.Comment: 4 pages, 5 figure

    Complete chaotic synchronization in mutually coupled time-delay systems

    Full text link
    Complete chaotic synchronization of end lasers has been observed in a line of mutually coupled, time-delayed system of three lasers, with no direct communication between the end lasers. The present paper uses ideas from generalized synchronization to explain the complete synchronization in the presence of long coupling delays, applied to a model of mutually coupled semiconductor lasers in a line. These ideas significantly simplify the analysis by casting the stability in terms of the local dynamics of each laser. The variational equations near the synchronization manifold are analyzed, and used to derive the synchronization condition that is a function of the parameters. The results explain and predict the dependence of synchronization on various parameters, such as time-delays, strength of coupling and dissipation. The ideas can be applied to understand complete synchronization in other chaotic systems with coupling delays and no direct communication between synchronized sub-systems.Comment: 22 pages, 6 figure

    The Sun in transition? Persistence of near-surface structural changes through Cycle 24

    Get PDF
    We examine the frequency shifts in low-degree helioseismic modes from the Birmingham Solar-Oscillations Network (BiSON) covering the period from 1985 - 2016, and compare them with a number of global activity proxies well as a latitudinally-resolved magnetic index. As well as looking at frequency shifts in different frequency bands, we look at a parametrization of the shift as a cubic function of frequency. While the shifts in the medium- and highfrequency bands are very well correlated with all of the activity indices (with the best correlation being with the 10.7 cm radio flux), we confirm earlier findings that there appears to have been a change in the frequency response to activity during solar cycle 23, and the low frequency shifts are less correlated with activity in the last two cycles than they were in Cycle 22. At the same time, the more recent cycles show a slight increase in their sensitivity to activity levels at medium and higher frequencies, perhaps because a greater proportion of activity is composed of weaker or more ephemeral regions. This lends weight to the speculation that a fundamental change in the nature of the solar dynamo may be in progress.Comment: 9 pages, 6 figures. Accepted by MNRAS 24 May 201
    • …
    corecore