6,502 research outputs found

    On the Photorefractive Gunn Effect

    Full text link
    We present and numerically solve a model of the photorefractive Gunn effect. We find that high field domains can be triggered by phase-locked interference fringes, as it has been recently predicted on the basis of linear stability considerations. Since the Gunn effect is intrinsically nonlinear, we find that such considerations give at best order-of-magnitude estimations of the parameters critical to the photorefractive Gunn effect. The response of the system is much more complex including multiple wave shedding from the injecting contact, wave suppression and chaos with spatial structure.Comment: Revtex, 8 pag., 4 fig. (jpg), submit to Physical Review

    Chaotic motion of space charge wavefronts in semiconductors under time-independent voltage bias

    Full text link
    A standard drift-diffusion model of space charge wave propagation in semiconductors has been studied numerically and analytically under dc voltage bias. For sufficiently long samples, appropriate contact resistivity and applied voltage - such that the sample is biased in a regime of negative differential resistance - we find chaos in the propagation of nonlinear fronts (charge monopoles of alternating sign) of electric field. The chaos is always low-dimensional, but has a complex spatial structure; this behavior can be interpreted using a finite dimensional asymptotic model in which the front (charge monopole) positions and the electrical current are the only dynamical variables.Comment: 12 pages, 8 figure

    A moment based approach to the dynamical solution of the Kuramoto model

    Get PDF
    We examine the dynamics of the Kuramoto model with a new analytical approach. By defining an appropriate set of moments the dynamical equations can be exactly closed. We discuss some applications of the formalism like the existence of an effective Hamiltonian for the dynamics. We also show how this approach can be used to numerically investigate the dynamical behavior of the model without finite size effects.Comment: 6 pages, 5 figures, Revtex file, to appear in J. Phys.

    Two mini-band model for self-sustained oscillations of the current through resonant tunneling semiconductor superlattices

    Full text link
    A two miniband model for electron transport in semiconductor superlattices that includes scattering and interminiband tunnelling is proposed. The model is formulated in terms of Wigner functions in a basis spanned by Pauli matrices, includes electron-electron scattering in the Hartree approximation and modified Bhatnagar-Gross-Krook collision tems. For strong applied fields, balance equations for the electric field and the miniband populations are derived using a Chapman-Enskog perturbation technique. These equations are then solved numerically for a dc voltage biased superlattice. Results include self-sustained current oscillations due to repeated nucleation of electric field pulses at the injecting contact region and their motion towards the collector. Numerical reconstruction of the Wigner functions shows that the miniband with higher energy is empty during most of the oscillation period: it becomes populated only when the local electric field (corresponding to the passing pulse) is sufficiently large to trigger resonant tunneling.Comment: 26 pages, 3 figures, to appear in Phys. Rev.

    Chaos in resonant-tunneling superlattices

    Full text link
    Spatio-temporal chaos is predicted to occur in n-doped semiconductor superlattices with sequential resonant tunneling as their main charge transport mechanism. Under dc voltage bias, undamped time-dependent oscillations of the current (due to the motion and recycling of electric field domain walls) have been observed in recent experiments. Chaos is the result of forcing this natural oscillation by means of an appropriate external microwave signal.Comment: 3 pages, LaTex, RevTex, 3 uuencoded figures (1.2M) are available upon request from [email protected], to appear in Phys.Rev.

    Addressing culture in the EFL classroom: A dialogic proposal built up through dialogism

    Get PDF
    Language teaching has gone from a linguistic centered approach towards a lingocultural experience in which learning a language goes hand in hand with the understanding of, not only the target culture but the learner’s own culture. This paper intends to describe and reflect upon a collaborative and dialogical experience carried out between two teachers of the Languages Program of Universidad de la Salle. The bilateral enrichment of such a pedagogical experience not only helped the teachers to improve their language teaching contexts but also prompted the construction of a theoretical proposal to enhance intercultural awareness and develop critical intercultural competence in FL learners

    Chapman-Enskog method and synchronization of globally coupled oscillators

    Full text link
    The Chapman-Enskog method of kinetic theory is applied to two problems of synchronization of globally coupled phase oscillators. First, a modified Kuramoto model is obtained in the limit of small inertia from a more general model which includes ``inertial'' effects. Second, a modified Chapman-Enskog method is used to derive the amplitude equation for an O(2) Takens-Bogdanov bifurcation corresponding to the tricritical point of the Kuramoto model with a bimodal distribution of oscillator natural frequencies. This latter calculation shows that the Chapman-Enskog method is a convenient alternative to normal form calculations.Comment: 7 pages, 2-column Revtex, no figures, minor change

    Dynamics of Electric Field Domains and Oscillations of the Photocurrent in a Simple Superlattice Model

    Full text link
    A discrete model is introduced to account for the time-periodic oscillations of the photocurrent in a superlattice observed by Kwok et al, in an undoped 40 period AlAs/GaAs superlattice. Basic ingredients are an effective negative differential resistance due to the sequential resonant tunneling of the photoexcited carriers through the potential barriers, and a rate equation for the holes that incorporates photogeneration and recombination. The photoexciting laser acts as a damping factor ending the oscillations when its power is large enough. The model explains: (i) the known oscillatory static I-V characteristic curve through the formation of a domain wall connecting high and low electric field domains, and (ii) the photocurrent and photoluminescence time-dependent oscillations after the domain wall is formed. In our model, they arise from the combined motion of the wall and the shift of the values of the electric field at the domains. Up to a certain value of the photoexcitation, the non-uniform field profile with two domains turns out to be metastable: after the photocurrent oscillations have ceased, the field profile slowly relaxes toward the uniform stationary solution (which is reached on a much longer time scale). Multiple stability of stationary states and hysteresis are also found. An interpretation of the oscillations in the photoluminescence spectrum is also given.Comment: 34 pages, REVTeX 3.0, 10 figures upon request, MA/UC3M/07/9

    Current-voltage characteristic and stability in resonant-tunneling n-doped semiconductor superlattices

    Full text link
    We review the occurrence of electric-field domains in doped superlattices within a discrete drift model. A complete analysis of the construction and stability of stationary field profiles having two domains is carried out. As a consequence, we can provide a simple analytical estimation for the doping density above which stable stable domains occur. This bound may be useful for the design of superlattices exhibiting self-sustained current oscillations. Furthermore we explain why stable domains occur in superlattices in contrast to the usual Gunn diode.Comment: Tex file and 3 postscript figure
    corecore