7,799 research outputs found
On the Surface Structure of Strange Superheavy Nuclei
Bound, strange, neutral superheavy nuclei, stable against strong decay, may
exist. A model effective field theory calculation of the surface energy and
density of such systems is carried out assuming vector meson couplings to
conserved currents and scalar couplings fit to data where it exists. The
non-linear relativistic mean field equations are solved assuming local baryon
sources. The approach is calibrated through a successful calculation of the
known nuclear surface tension.Comment: 12 pages, 9 figure
Data-Mining a Large Digital Sky Survey: From the Challenges to the Scientific Results
The analysis and an efficient scientific exploration of the Digital Palomar
Observatory Sky Survey (DPOSS) represents a major technical challenge. The
input data set consists of 3 Terabytes of pixel information, and contains a few
billion sources. We describe some of the specific scientific problems posed by
the data, including searches for distant quasars and clusters of galaxies, and
the data-mining techniques we are exploring in addressing them.
Machine-assisted discovery methods may become essential for the analysis of
such multi-Terabyte data sets. New and future approaches involve unsupervised
classification and clustering analysis in the Giga-object data space, including
various Bayesian techniques. In addition to the searches for known types of
objects in this data base, these techniques may also offer the possibility of
discovering previously unknown, rare types of astronomical objects.Comment: Invited paper, to appear in Applications of Digital Image Processing
XX, ed. A. Tescher, Proc. S.P.I.E. vol. 3164, in press; 10 pages, a
self-contained TeX file, and 3 separate postscript figure
Microcomputer laboratories in mathematics education
AbstractThis article discusses the mathematical-educational potential of a computational laboratory at the pre-calculus and co-calculus levels. The laboratory envisaged is based on a set of microcomputers, whose use plays a central role in the teaching process, with particular emphasis on algorithmization. A new role for the mathematics teacher and professor is layed out, augmenting the “chalk and talk” methods by active participation as a laboratory instructor. Following a brief description of the integration of such a laboratory into the mathematical education, seven appropriate subjects are discussed, including some new relevant elementary proofs and worked out examples. Emphasis is placed upon the mathematical-educational byproducts (such as error bounds, ill-conditioning, complexity, rate of convergence, etc.) accompanying the implementation of these seven modules. Special attention is given to the removal of “black box” procedures and to the construction of “numerical methods that work”. Extensions and generalizations to more advanced topics are indicated, especially where the results in our modules may serve as points of departure in that direction
Longtime behavior of nonlocal Cahn-Hilliard equations
Here we consider the nonlocal Cahn-Hilliard equation with constant mobility
in a bounded domain. We prove that the associated dynamical system has an
exponential attractor, provided that the potential is regular. In order to do
that a crucial step is showing the eventual boundedness of the order parameter
uniformly with respect to the initial datum. This is obtained through an
Alikakos-Moser type argument. We establish a similar result for the viscous
nonlocal Cahn-Hilliard equation with singular (e.g., logarithmic) potential. In
this case the validity of the so-called separation property is crucial. We also
discuss the convergence of a solution to a single stationary state. The
separation property in the nonviscous case is known to hold when the mobility
degenerates at the pure phases in a proper way and the potential is of
logarithmic type. Thus, the existence of an exponential attractor can be proven
in this case as well
The luminous late-time emission of the type Ic supernova iPTF15dtg - evidence for powering from a magnetar?
iPTF15dtg is a Type Ic supernova (SN) showing a broad light curve around
maximum light, consistent with massive ejecta if we assume a
radioactive-powering scenario. We study the late-time light curve of iPTF15dtg,
which turned out to be extraordinarily luminous for a stripped-envelope (SE)
SN. We compare the observed light curves to those of other SE SNe and also with
models for the Co decay. We analyze and compare the spectra to nebular
spectra of other SE SNe. We build a bolometric light curve and fit it with
different models, including powering by radioactivity, magnetar powering, as
well as a combination of the two. Between 150 d and 750 d past explosion,
iPTF15dtg's luminosity declined by merely two magnitudes instead of the six
magnitudes expected from Co decay. This is the first
spectroscopically-regular SE SN showing this behavior. The model with both
radioactivity and magnetar powering provides the best fit to the light curve
and appears to be the more realistic powering mechanism. An alternative
mechanism might be CSM interaction. However, the spectra of iPTF15dtg are very
similar to those of other SE SNe, and do not show signs of strong CSM
interaction. iPTF15dtg is the first spectroscopically-regular SE SN whose light
curve displays such clear signs of a magnetar contributing to the powering of
the late time light curve. Given this result, the mass of the ejecta needs to
be revised to a lower value, and therefore the progenitor mass could be
significantly lower than the previously estimated 35 .Comment: 9 pages, 8 figures, accepted for publication in Astronomy and
Astrophysic
Preliminary Results from the Caltech Core-Collapse Project (CCCP)
We present preliminary results from the Caltech Core-Collapse Project (CCCP),
a large observational program focused on the study of core-collapse SNe.
Uniform, high-quality NIR and optical photometry and multi-epoch optical
spectroscopy have been obtained using the 200'' Hale and robotic 60''
telescopes at Palomar, for a sample of 50 nearby core-collapse SNe. The
combination of both well-sampled optical light curves and multi-epoch
spectroscopy will enable spectroscopically and photometrically based subtype
definitions to be disentangled from each other. Multi-epoch spectroscopy is
crucial to identify transition events that evolve among subtypes with time. The
CCCP SN sample includes every core-collapse SN discovered between July 2004 and
September 2005 that was visible from Palomar, found shortly (< 30 days) after
explosion (based on available pre-explosion photometry), and closer than ~120
Mpc. This complete sample allows, for the first time, a study of core-collapse
SNe as a population, rather than as individual events. Here, we present the
full CCCP SN sample and show exemplary data collected. We analyze available
data for the first ~1/3 of the sample and determine the subtypes of 13 SNe II
based on both light curve shapes and spectroscopy. We discuss the relative SN
II subtype fractions in the context of associating SN subtypes with specific
progenitor stars.Comment: To appear in the proceedings of the meeting "The Multicoloured
Landscape of Compact Objects and their Explosive Origins", Cefalu, Italy,
June 2006, to be published by AIP, Eds. L. Burderi et a
Mass along the Line of Sight to the Gravitational Lens B1608+656: Galaxy Groups and Implications for H_0
We report the discovery of four groups of galaxies along the line of sight to the B1608+656 gravitational lens system. One group is at the redshift of the primary lensing galaxy (z = 0.631) and appears to have a low mass, with eight spectroscopically confirmed members and an estimated velocity dispersion of 150 ± 60 km s^(-1). The three other groups are in the foreground of the lens. These groups contain ~10 confirmed members each and are located at redshifts of 0.265, 0.426, and 0.52. Two of the three additional groups are centered roughly on the lens system, while the third is centered ~1' south of the lens. We investigate the effect of each of the four groups on the gravitational lensing potential of the B1608+656 system, with a particular focus on the implications for the value of H_0 derived from this system. We find that each group provides an external convergence of ~0.005-0.060, depending on the assumptions made in the calculation. For the B1608+656 system, the stellar velocity dispersion of the lensing galaxy has been measured, thus breaking the mass sheet degeneracy due to the group that is physically associated with the lens. The effect of the other groups along the line of sight can be folded into the overall uncertainties due to large-scale structure (LSS) along the line of sight. Because B1608+656 appears to lie along an overdense line of sight, the LSS will cause the measurement of H_0 to be biased high for this system. This effect could be 5% or greater
- …